Locally conformally symplectic reduction

被引:8
|
作者
Stanciu, Miron [1 ,2 ]
机构
[1] Romanian Acad, Inst Math Simion Stoilow, 21 Calea Grivitei St, Bucharest 010702, Romania
[2] Univ Bucharest, Fac Math & Comp Sci, 14 Acad Str, Bucharest, Romania
关键词
Locally conformally symplectic; Locally conformally Kahler; Contact manifold; Sasakian manifold; Momentum map; Reduction; CONTACT;
D O I
10.1007/s10455-019-09666-9
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We present a reduction procedure for locally conformally symplectic manifolds with an action of a Lie group preserving the conformal structure, with respect to any regular value of the momentum mapping. Under certain conditions, this reduction is compatible with the existence of a locally conformally Kahler structure. As a special consequence, we obtain a compatible contact reduction with respect to any regular value of the contact momentum mapping.
引用
收藏
页码:245 / 275
页数:31
相关论文
共 50 条
  • [1] Locally conformally symplectic reduction
    Miron Stanciu
    Annals of Global Analysis and Geometry, 2019, 56 : 245 - 275
  • [2] Locally conformally symplectic reduction of the cotangent bundle
    Miron Stanciu
    Annals of Global Analysis and Geometry, 2022, 61 : 533 - 551
  • [4] Locally conformally symplectic convexity
    Belgun, F.
    Goertsches, O.
    Petrecca, D.
    JOURNAL OF GEOMETRY AND PHYSICS, 2019, 135 : 235 - 252
  • [5] Locally conformally symplectic bundles
    Otiman, Alexandra
    JOURNAL OF SYMPLECTIC GEOMETRY, 2018, 16 (05) : 1377 - 1408
  • [6] Locally conformally symplectic and kahler geometry
    Bazzoni, Giovanni
    EMS SURVEYS IN MATHEMATICAL SCIENCES, 2018, 5 (1-2) : 129 - 154
  • [7] Some invariants of locally conformally symplectic structures
    Banyaga, A
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 2001, 332 (01): : 29 - 32
  • [8] Cohomologies of locally conformally symplectic manifolds and solvmanifolds
    Daniele Angella
    Alexandra Otiman
    Nicoletta Tardini
    Annals of Global Analysis and Geometry, 2018, 53 : 67 - 96
  • [9] Contact pairs and locally conformally symplectic structures
    Bande, G.
    Kotschick, D.
    HARMONIC MAPS AND DIFFERENTIAL GEOMETRY, 2011, 542 : 85 - +
  • [10] MOSER STABILITY FOR LOCALLY CONFORMALLY SYMPLECTIC STRUCTURES
    Bande, G.
    Kotschick, D.
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2009, 137 (07) : 2419 - 2424