MOSER STABILITY FOR LOCALLY CONFORMALLY SYMPLECTIC STRUCTURES

被引:18
|
作者
Bande, G. [1 ]
Kotschick, D. [2 ]
机构
[1] Univ Cagliari, Dipartimento Matemat & Informat, I-09124 Cagliari, Italy
[2] Univ Munich, Math Inst, D-80333 Munich, Germany
关键词
GEOMETRY;
D O I
10.1090/S0002-9939-09-09821-9
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We formulate and prove the analogue of Moser's stability theorem for locally conformally symplectic structures. As special cases we recover some results previously proved by Banyaga.
引用
收藏
页码:2419 / 2424
页数:6
相关论文
共 50 条
  • [21] Hamilton-Jacobi formalism on locally conformally symplectic manifolds
    Esen, Ogul
    de Leon, Manuel
    Sardon, Cristina
    Zajsc, Marcin
    JOURNAL OF MATHEMATICAL PHYSICS, 2021, 62 (03)
  • [22] Locally conformally symplectic deformation of Gromov non-squeezing
    Yasha Savelyev
    Archiv der Mathematik, 2024, 122 : 95 - 108
  • [23] Locally conformally product structures on solvmanifolds
    Andrada, Adrian
    del Barco, Viviana
    Moroianu, Andrei
    ANNALI DI MATEMATICA PURA ED APPLICATA, 2024, 203 (05) : 2425 - 2456
  • [24] Parabolic conformally symplectic structures II: parabolic contactification
    Andreas Čap
    Tomáš Salač
    Annali di Matematica Pura ed Applicata (1923 -), 2018, 197 : 1175 - 1199
  • [25] Parabolic conformally symplectic structures II: parabolic contactification
    Cap, Andreas
    Salac, Tomas
    ANNALI DI MATEMATICA PURA ED APPLICATA, 2018, 197 (04) : 1175 - 1199
  • [26] Twisted differentials and Lee classes of locally conformally symplectic complex surfaces
    Apostolov, Vestislav
    Dloussky, Georges
    MATHEMATISCHE ZEITSCHRIFT, 2023, 303 (03)
  • [27] Twisted differentials and Lee classes of locally conformally symplectic complex surfaces
    Vestislav Apostolov
    Georges Dloussky
    Mathematische Zeitschrift, 2023, 303
  • [28] The characteristic group of locally conformally product structures
    Flamencourt, Brice
    ANNALI DI MATEMATICA PURA ED APPLICATA, 2025, 204 (01) : 189 - 211
  • [29] Parabolic conformally symplectic structures I; definition and distinguished connections
    Cap, Andreas
    Salac, Tomas
    FORUM MATHEMATICUM, 2018, 30 (03) : 733 - 751
  • [30] QUOTIENT COADJOINT MAPPING AND HOMOGENOUS CONTACT SPACES OR LOCALLY CONFORMALLY SYMPLECTIC SPACES
    LICHNEROWICZ, A
    JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 1986, 65 (02): : 193 - 224