A spatial-temporal graph neural network framework for automated software bug triaging

被引:13
|
作者
Wu, Hongrun [1 ]
Ma, Yutao [2 ]
Xiang, Zhenglong [1 ,3 ]
Yang, Chen [4 ]
He, Keqing [2 ]
机构
[1] Minnan Normal Univ, Sch Phys & Informat Engn, Key Lab Intelligent Optimizat & Informat Proc, Zhangzhou 363000, Peoples R China
[2] Wuhan Univ, Sch Comp Sci, Wuhan 430072, Peoples R China
[3] Nanjing Univ Informat Sci & Technol, Sch Comp & Software, Nanjing 210044, Peoples R China
[4] IBO Technol Shenzhen Co Ltd, Shenzhen 212000, Peoples R China
基金
中国国家自然科学基金;
关键词
Graph neural network; Representation learning; Bug triage; Random walk; Attention;
D O I
10.1016/j.knosys.2022.108308
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The bug triaging process, an essential process of assigning bug reports to the most appropriate developers, is related closely to the quality and costs of software development. Since manual bug assignment is a labor-intensive task, especially for large-scale software projects, many machine learning-based approaches have been proposed to triage bug reports automatically. Although developer collaboration networks (DCNs) are dynamic and evolving in the real world, most automated bug triaging approaches focus on static tossing graphs at a single time slice. Also, none of the previous studies consider periodic interactions among developers. To address the problems mentioned above, in this article, we propose a novel spatial-temporal dynamic graph neural network (ST-DGNN) framework, including a joint random walk (JRWalk) mechanism and a graph recurrent convolutional neural network (GRCNN) model. In particular, JRWalk aims to sample topological structures in a developer collaboration network with two sampling strategies by considering both developer reputation and interaction preference. GRCNN has three components with the same structure, i.e., hourly-periodic, daily-periodic, and weekly-periodic components, to learn the spatial-temporal features of nodes on dynamic DCNs. We evaluated our approach's effectiveness by comparing it with several state-of-the-art graph representation learning methods in three domain-specific tasks (i.e., the bug fixer prediction task and two downstream tasks of graph representation learning: node classification and link prediction). In the three tasks, experiments on two real-world, large-scale developer collaboration networks collected from the Eclipse and Mozilla projects indicate that the proposed approach outperforms all the baseline methods on three different time scales (i.e., long-term, medium-term, and short-term predictions) in terms of F1-score. (c) 2022 Elsevier B.V. All rights reserved.
引用
收藏
页数:19
相关论文
共 50 条
  • [1] Spatial-temporal dynamic semantic graph neural network
    Rui Zhang
    Fei Xie
    Rui Sun
    Lei Huang
    Xixiang Liu
    Jianjun Shi
    Neural Computing and Applications, 2022, 34 : 16655 - 16668
  • [2] Localised Adaptive Spatial-Temporal Graph Neural Network
    Duan, Wenying
    He, Xiaoxi
    Zhou, Zimu
    Thiele, Lothar
    Rao, Hong
    arXiv, 2023,
  • [3] Localised Adaptive Spatial-Temporal Graph Neural Network
    Duan, Wenying
    He, Xiaoxi
    Zhou, Zimu
    Thiele, Lothar
    Rao, Hong
    Proceedings of the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 2023, : 448 - 458
  • [4] Localised Adaptive Spatial-Temporal Graph Neural Network
    Duan, Wenying
    He, Xiaoxi
    Zhou, Zimu
    Thiele, Lothar
    Rao, Hong
    PROCEEDINGS OF THE 29TH ACM SIGKDD CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING, KDD 2023, 2023, : 448 - 458
  • [5] Spatial-temporal dynamic semantic graph neural network
    Zhang, Rui
    Xie, Fei
    Sun, Rui
    Huang, Lei
    Liu, Xixiang
    Shi, Jianjun
    NEURAL COMPUTING & APPLICATIONS, 2022, 34 (19): : 16655 - 16668
  • [6] Spatial-temporal Graph Transformer Network for Spatial-temporal Forecasting
    Dao, Minh-Son
    Zetsu, Koji
    Hoang, Duy-Tang
    Proceedings - 2024 IEEE International Conference on Big Data, BigData 2024, 2024, : 1276 - 1281
  • [7] Spatial-Temporal Synchronous Graph Convolutional Networks: A New Framework for Spatial-Temporal Network Data Forecasting
    Song, Chao
    Lin, Youfang
    Guo, Shengnan
    Wan, Huaiyu
    THIRTY-FOURTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, THE THIRTY-SECOND INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE CONFERENCE AND THE TENTH AAAI SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2020, 34 : 914 - 921
  • [8] Spatial-temporal graph neural network based on node attention
    Li, Qiang
    Wan, Jun
    Zhang, Wucong
    Kweh, Qian Long
    APPLIED MATHEMATICS AND NONLINEAR SCIENCES, 2022, 7 (02) : 703 - 712
  • [9] Hybrid spatial-temporal graph neural network for traffic forecasting
    Wang, Peng
    Feng, Longxi
    Zhu, Yijie
    Wu, Haopeng
    INFORMATION FUSION, 2025, 118
  • [10] Attention spatial-temporal graph neural network for traffic prediction
    Gan P.
    Nong L.
    Zhang W.
    Lin J.
    Wang J.
    Xi'an Dianzi Keji Daxue Xuebao/Journal of Xidian University, 2023, 50 (01): : 168 - 176