Global Policy Construction in Modular Reinforcement Learning

被引:0
|
作者
Zhang, Ruohan [1 ]
Song, Zhao [1 ]
Ballard, Dana H. [1 ]
机构
[1] Univ Texas Austin, Dept Comp Sci, 2317 Speedway,Stop D9500, Austin, TX 78712 USA
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We propose a modular reinforcement learning algorithm which decomposes a Markov decision process into independent modules. Each module is trained using Sarsa(lambda). We introduce three algorithms for forming global policy from modules policies, and demonstrate our results using a 2D grid world.
引用
收藏
页码:4226 / 4227
页数:2
相关论文
共 50 条
  • [41] Evolving Constrained Reinforcement Learning Policy
    Hu, Chengpeng
    Pei, Jiyuan
    Liu, Jialin
    Yao, Xin
    2023 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS, IJCNN, 2023,
  • [42] Expected policy gradients for reinforcement learning
    Ciosek, Kamil
    Whiteson, Shimon
    Journal of Machine Learning Research, 2020, 21
  • [43] On-policy concurrent reinforcement learning
    Banerjee, B
    Sen, S
    Peng, J
    JOURNAL OF EXPERIMENTAL & THEORETICAL ARTIFICIAL INTELLIGENCE, 2004, 16 (04) : 245 - 260
  • [44] Policy gradient fuzzy reinforcement learning
    Wang, XN
    Xu, X
    He, HG
    PROCEEDINGS OF THE 2004 INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND CYBERNETICS, VOLS 1-7, 2004, : 992 - 995
  • [45] Modular Reinforcement Learning for Autonomous UAV Flight Control
    Choi, Jongkwan
    Kim, Hyeon Min
    Hwang, Ha Jun
    Kim, Yong-Duk
    Kim, Chang Ouk
    DRONES, 2023, 7 (07)
  • [46] A modular approach to multi-agent reinforcement learning
    Ono, N
    Fukumoto, K
    DISTRIBUTED ARTIFICIAL INTELLIGENCE MEETS MACHINE LEARNING: LEARNING IN MULTI-AGENT ENVIRONMENTS, 1997, 1221 : 25 - 39
  • [47] Modular reinforcement learning:: An application to a real robot task
    Kalmár, Z
    Szepesvári, C
    Lörincz, A
    LEARNING ROBOTS, PROCEEDINGS, 1998, 1545 : 29 - 45
  • [48] Modular Robot Design Synthesis with Deep Reinforcement Learning
    Whitman, Julian
    Bhirangi, Raunaq
    Travers, Matthew
    Choset, Howie
    THIRTY-FOURTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, THE THIRTY-SECOND INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE CONFERENCE AND THE TENTH AAAI SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2020, 34 : 10418 - 10425
  • [49] A modular framework for stabilizing deep reinforcement learning control
    Lawrence, Nathan P.
    Loewen, Philip D.
    Wang, Shuyuan
    Forbes, Michael G.
    Gopaluni, R. Bhushan
    IFAC PAPERSONLINE, 2023, 56 (02): : 8006 - 8011
  • [50] MANDREL: Modular Reinforcement Learning Pipelines for Material Discovery
    Fare, Clyde
    Holt, George K.
    Chiazor, Lamogha
    Smyrnakis, Michalis
    Tracey, Robert
    Hoang, Lan
    THIRTY-EIGTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, VOL 38 NO 21, 2024, : 23787 - 23789