Modular Robot Design Synthesis with Deep Reinforcement Learning

被引:0
|
作者
Whitman, Julian [1 ]
Bhirangi, Raunaq [2 ]
Travers, Matthew [2 ]
Choset, Howie [2 ]
机构
[1] Carnegie Mellon Univ, Dept Mech Engn, 5000 Forbes Ave, Pittsburgh, PA 15213 USA
[2] Carnegie Mellon Univ, Robot Inst, 5000 Forbes Ave, Pittsburgh, PA 15213 USA
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Modular robots hold the promise of versatility in that their components can be re-arranged to adapt the robot design to a task at deployment time. Even for the simplest designs, determining the optimal design is exponentially complex due to the number of permutations of ways the modules can be connected. Further, when selecting the design for a given task, there is an additional computational burden in evaluating the capability of each robot, e.g., whether it can reach certain points in the workspace. This work uses deep reinforcement learning to create a search heuristic that allows us to efficiently search the space of modular serial manipulator designs. We show that our algorithm is more computationally efficient in determining robot designs for given tasks in comparison to the current state-of-the-art.
引用
收藏
页码:10418 / 10425
页数:8
相关论文
共 50 条
  • [1] Modular deep reinforcement learning from reward and punishment for robot navigation
    Wang, Jiexin
    Elfwing, Stefan
    Uchibe, Eiji
    [J]. NEURAL NETWORKS, 2021, 135 : 115 - 126
  • [2] Automated Deep Reinforcement Learning Environment for Hardware of a Modular Legged Robot
    Ha, Sehoon
    Kim, Joohyung
    Yamane, Katsu
    [J]. 2018 15TH INTERNATIONAL CONFERENCE ON UBIQUITOUS ROBOTS (UR), 2018, : 348 - 354
  • [3] Modular Deep Reinforcement Learning for Emergent Locomotion on a Six-Legged Robot
    Schilling, Malte
    Konen, Kai
    Korthals, Timo
    [J]. 2020 8TH IEEE RAS/EMBS INTERNATIONAL CONFERENCE FOR BIOMEDICAL ROBOTICS AND BIOMECHATRONICS (BIOROB), 2020, : 946 - 953
  • [4] Modular reinforcement learning:: An application to a real robot task
    Kalmár, Z
    Szepesvári, C
    Lörincz, A
    [J]. LEARNING ROBOTS, PROCEEDINGS, 1998, 1545 : 29 - 45
  • [5] Modular reinforcement learning: a case study in a robot domain
    Kalmar, Zsolt
    Szepesvari, Csaba
    Lorincz, Andras
    [J]. Acta Cybernetica, 2000, 14 (03): : 507 - 522
  • [6] Design and Experiment of Complex Terrain Adaptive Robot Based on Deep Reinforcement Learning
    Yang D.
    Yang S.
    Yu Y.
    Wang Q.
    [J]. Yuhang Xuebao/Journal of Astronautics, 2022, 43 (09): : 1176 - 1185
  • [7] Deep Reinforcement Learning for Humanoid Robot Dribbling
    Muzio, Alexandre F., V
    Maximo, Marcos R. O. A.
    Yoneyama, Takashi
    [J]. 2020 XVIII LATIN AMERICAN ROBOTICS SYMPOSIUM, 2020 XII BRAZILIAN SYMPOSIUM ON ROBOTICS AND 2020 XI WORKSHOP OF ROBOTICS IN EDUCATION (LARS-SBR-WRE 2020), 2020, : 246 - 251
  • [8] Deep Reinforcement Learning for Snake Robot Locomotion
    Shi, Junyao
    Dear, Tony
    Kelly, Scott David
    [J]. IFAC PAPERSONLINE, 2020, 53 (02): : 9688 - 9695
  • [9] Deep Reinforcement Learning for Humanoid Robot Behaviors
    Muzio, Alexandre F. V.
    Maximo, Marcos R. O. A.
    Yoneyama, Takashi
    [J]. Journal of Intelligent and Robotic Systems: Theory and Applications, 2022, 105 (01):
  • [10] Review of Deep Reinforcement Learning for Robot Manipulation
    Hai Nguyen
    Hung Manh La
    [J]. 2019 THIRD IEEE INTERNATIONAL CONFERENCE ON ROBOTIC COMPUTING (IRC 2019), 2019, : 590 - 595