The Langevin Equation in Terms of Generalized Liouville-Caputo Derivatives with Nonlocal Boundary Conditions Involving a Generalized Fractional Integral

被引:33
|
作者
Ahmad, Bashir [1 ]
Alghanmi, Madeaha [1 ]
Alsaedi, Ahmed [1 ]
Srivastava, Hari M. [2 ,3 ]
Ntouyas, Sotiris K. [1 ,4 ]
机构
[1] King Abdulaziz Univ, Fac Sci, Dept Math, Nonlinear Anal & Appl Math NAAM Res Grp, POB 80203, Jeddah 21589, Saudi Arabia
[2] Univ Victoria, Dept Math & Stat, Victoria, BC V8W 3R4, Canada
[3] China Med Univ, China Med Univ Hosp, Dept Med Res, Taichung 40402, Taiwan
[4] Univ Ioannina, Dept Math, Ioannina 45110, Greece
关键词
Langevin equation; generalized fractional integral; generalized Liouville-Caputo derivative; nonlocal boundary conditions; existence; fixed point;
D O I
10.3390/math7060533
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we establish sufficient conditions for the existence of solutions for a nonlinear Langevin equation based on Liouville-Caputo-type generalized fractional differential operators of different orders, supplemented with nonlocal boundary conditions involving a generalized integral operator. The modern techniques of functional analysis are employed to obtain the desired results. The paper concludes with illustrative examples.
引用
收藏
页数:10
相关论文
共 50 条
  • [31] Nonlinear Sequential Fractional Boundary Value Problems Involving Generalized ?-Caputo Fractional Derivatives
    Dien, Nguyen Minh
    FILOMAT, 2022, 36 (15) : 5047 - 5058
  • [32] Fractional Langevin Equations with Nonlocal Integral Boundary Conditions
    Salem, Ahmed
    Alzahrani, Faris
    Almaghamsi, Lamya
    MATHEMATICS, 2019, 7 (05)
  • [33] Caputo type fractional differential equations with nonlocal Riemann-Liouville integral boundary conditions
    Ahmad B.
    Ntouyas S.K.
    Assolami A.
    Journal of Applied Mathematics and Computing, 2013, 41 (1-2) : 339 - 350
  • [34] Generalized natural boundary conditions for fractional variational problems in terms of the Caputo derivative
    Malinowska, Agnieszka B.
    Torres, Delfim F. M.
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2010, 59 (09) : 3110 - 3116
  • [35] On a Generalized Langevin Type Nonlocal Fractional Integral Multivalued Problem
    Alsaedi, Ahmed
    Ahmad, Bashir
    Alghanmi, Madeaha
    Ntouyas, Sotiris K.
    MATHEMATICS, 2019, 7 (11)
  • [36] Generalized Riemann-Liouville and Liouville-Caputo time fractional evolution equations associated to the number operator
    Ziyad A. Alhussain
    Habib Rebei
    Hafedh Rguigui
    Anis Riahi
    São Paulo Journal of Mathematical Sciences, 2021, 15 : 435 - 449
  • [37] Generalized Riemann-Liouville and Liouville-Caputo time fractional evolution equations associated to the number operator
    Alhussain, Ziyad A.
    Rebei, Habib
    Rguigui, Hafedh
    Riahi, Anis
    SAO PAULO JOURNAL OF MATHEMATICAL SCIENCES, 2021, 15 (01): : 435 - 449
  • [38] Nonlinear sequential Riemann-Liouville and Caputo fractional differential equations with generalized fractional integral conditions
    Promsakon, Chanon
    Phuangthong, Nawapol
    Ntouyas, Sotiris K.
    Tariboon, Jessada
    ADVANCES IN DIFFERENCE EQUATIONS, 2018,
  • [39] Investigation of Langevin Equation in Terms of Generalized Proportional Fractional Derivatives with Respect to Another Function
    Abbas, Mohamed I.
    FILOMAT, 2021, 35 (12) : 4073 - 4085
  • [40] Compact and Noncompact Solutions to Generalized Sturm-Liouville and Langevin Equation with Caputo-Hadamard Fractional Derivative
    Salem, Ahmed
    Mshary, Noorah
    El-Shahed, Moustafa
    Alzahrani, Faris
    MATHEMATICAL PROBLEMS IN ENGINEERING, 2021, 2021