A direct numerical simulation study of vorticity transformation in weakly turbulent premixed flames

被引:63
|
作者
Lipatnikov, A. N. [1 ]
Nishiki, S. [2 ]
Hasegawa, T. [3 ]
机构
[1] Chalmers, Dept Appl Mech, S-41296 Gothenburg, Sweden
[2] Kagoshima Univ, Dept Mech Engn, Kagoshima 8900065, Japan
[3] Nagoya Univ, EcoTopia Sci Inst, Nagoya, Aichi 4648603, Japan
关键词
NAVIER-STOKES SIMULATIONS; CINEMA-STEREOSCOPIC PIV; SCALAR DISSIPATION RATE; METHANE-AIR FLAMES; FRACTAL CHARACTERISTICS; GENERATED TURBULENCE; THERMAL-EXPANSION; COMBUSTION; FLOWS; STATISTICS;
D O I
10.1063/1.4898640
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
Database obtained earlier in 3D Direct Numerical Simulations (DNS) of statistically stationary, 1D, planar turbulent flames characterized by three different density ratios a is processed in order to investigate vorticity transformation in premixed combustion under conditions of moderately weak turbulence (rms turbulent velocity and laminar flame speed are roughly equal to one another). In cases H and M characterized by sigma = 7.53 and 5.0, respectively, anisotropic generation of vorticity within the flame brush is reported. In order to study physical mechanisms that control this phenomenon, various terms in vorticity and enstrophy balance equations are analyzed, with both mean terms and terms conditioned on a particular value c of the combustion progress variable being addressed. Results indicate an important role played by baroclinic torque and dilatation in transformation of average vorticity and enstrophy within both flamelets and flame brush. Besides these widely recognized physical mechanisms, two other effects are documented. First, viscous stresses redistribute enstrophy within flamelets, but play a minor role in the balance of the mean enstrophy (Omega) over bar within turbulent flame brush. Second, negative correlation V (Omega) over bar' between fluctuations in velocity u and enstrophy gradient contributes substantially to an increase in the mean (Omega) over bar within turbulent flame brush. This negative correlation is mainly controlled by the positive correlation between fluctuations in the enstrophy and dilatation and, therefore, dilatation fluctuations substantially reduce the damping effect of the mean dilatation on the vorticity and enstrophy fields. In case L characterized by sigma = 2.5, these effects are weakly pronounced and (Omega) over bar is reduced mainly due to viscosity. Under conditions of the present DNS, vortex stretching plays a minor role in the balance of vorticity and enstrophy within turbulent flame brush in all three cases. (C) 2014 AIP Publishing LLC.
引用
收藏
页数:16
相关论文
共 50 条
  • [21] Direct numerical simulation of turbulent flames.
    Chen, JH
    Im, HG
    Echekki, T
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 1998, 215 : U268 - U268
  • [22] Effects of Lewis Number on Head on Quenching of Turbulent Premixed Flames: A Direct Numerical Simulation Analysis
    Lai, Jiawei
    Chakraborty, Nilanjan
    FLOW TURBULENCE AND COMBUSTION, 2016, 96 (02) : 279 - 308
  • [23] Effects of Lewis Number on Head on Quenching of Turbulent Premixed Flames: A Direct Numerical Simulation Analysis
    Jiawei Lai
    Nilanjan Chakraborty
    Flow, Turbulence and Combustion, 2016, 96 : 279 - 308
  • [24] Direct numerical simulation of turbulent premixed flames using intrinsic low-dimensional manifolds
    Gicquel, O
    Thévenin, D
    Hilka, M
    Darabiha, N
    COMBUSTION THEORY AND MODELLING, 1999, 3 (03) : 479 - 502
  • [25] Physical effects of water droplets interacting with turbulent premixed flames: A Direct Numerical Simulation analysis
    Hasslberger, Josef
    Ozel-Erol, Gulcan
    Chakraborty, Nilanjan
    Klein, Markus
    Cant, Stewart
    COMBUSTION AND FLAME, 2021, 229
  • [26] Direct numerical simulation of soot break-through in turbulent non-premixed flames
    Scialabba, Gandolfo
    Davidovic, Marco
    Attili, Antonio
    Pitsch, Heinz
    Combustion and Flame, 2025, 275
  • [27] Inertial effects on the interaction of water droplets with turbulent premixed flames: A direct numerical simulation analysis
    Hasslberger, Josef
    Concetti, Riccardo
    Chakraborty, Nilanjan
    Klein, Markus
    PROCEEDINGS OF THE COMBUSTION INSTITUTE, 2023, 39 (02) : 2575 - 2586
  • [28] Statistical Analysis of Cross Scalar Dissipation Rate Transport in Turbulent Partially Premixed Flames: A Direct Numerical Simulation Study
    Malkeson, Sean P.
    Chakraborty, Nilanjan
    FLOW TURBULENCE AND COMBUSTION, 2011, 87 (2-3) : 313 - 349
  • [29] Direct numerical simulations of turbulent premixed flames with realistic kinetic mechanisms
    Tanahashi, Mamoru
    Nada, Yuzuru
    Shiwaku, Nobuhiro
    Miyauchi, Toshio
    FRONTIERS OF COMPUTATIONAL SCIENCE, 2007, : 107 - +
  • [30] Statistical Analysis of Cross Scalar Dissipation Rate Transport in Turbulent Partially Premixed Flames: A Direct Numerical Simulation Study
    Sean P. Malkeson
    Nilanjan Chakraborty
    Flow, Turbulence and Combustion, 2011, 87 : 313 - 349