Asymptotic convergence of solutions for Laplace reaction-diffusion equations

被引:0
|
作者
Iwasaki, Satoru [1 ]
Yagi, Atsushi [2 ]
机构
[1] Osaka Univ, Grad Sch Informat Sci & Technol, Dept Informat & Phys Sci, Suita, Osaka 5650871, Japan
[2] Osaka Univ, Grad Sch Informat Sci & Technol, Suita, Osaka 5650871, Japan
关键词
Diffusion equations in composite media; Lojasiewicz-Simon inequality; Asymptotic convergence; TRANSIENT CONDUCTION; GRADIENT INEQUALITY; COMPOSITE SLAB;
D O I
10.1016/j.nonrwa.2019.102986
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the initial-boundary value problem for a Laplace reaction-diffusion equation. After constructing local solutions by using the theory of abstract degenerate evolution equations of parabolic type, we show asymptotic convergence of bounded global solutions if they exist under the assumption that the reaction function is analytic in neighborhoods of their w-limit sets. Reduction of degenerate evolution equation to multivalued evolution equation enables us to use the theory of the infinite-dimensional Lojasiewicz-Simon gradient inequality. (C) 2019 The Authors. Published by Elsevier Ltd.
引用
收藏
页数:21
相关论文
共 50 条
  • [21] ASYMPTOTIC BEHAVIOR OF NONLOCAL BISTABLE REACTION-DIFFUSION EQUATIONS
    Besse, Christophe
    Capel, Alexandre
    Faye, Gregory
    Fouilhe, Guilhem
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2023, 28 (12): : 5967 - 5997
  • [22] THE ASYMPTOTIC-BEHAVIOR OF SOLUTIONS OF BELOUSOV-ZHABOTINSKII TYPE REACTION-DIFFUSION EQUATIONS
    TUMA, E
    SLEEMAN, BD
    GRINDROD, P
    QUARTERLY JOURNAL OF MECHANICS AND APPLIED MATHEMATICS, 1986, 39 : 403 - 415
  • [23] Asymptotic Behavior of Solutions to Reaction-Diffusion Equations with Dynamic Boundary Conditions and Irregular Data
    Duan, Yonghong
    Hu, Chunlei
    Chai, Xiaojuan
    DISCRETE DYNAMICS IN NATURE AND SOCIETY, 2018, 2018
  • [24] Asymptotic behaviour for solutions to reaction-diffusion equations on a root-like metric graph
    Lou, Bendong
    Morita, Yoshihisa
    NONLINEARITY, 2024, 37 (07)
  • [25] Numerical Solution of Reaction-Diffusion Equations with Convergence Analysis
    Heidari, M.
    Ghovatmand, M.
    Skandari, M. H. Noori
    Baleanu, D.
    JOURNAL OF NONLINEAR MATHEMATICAL PHYSICS, 2023, 30 (02) : 384 - 399
  • [26] Asymptotic behavior of solutions to chemical reaction-diffusion systems
    Pierre, Michel
    Suzuki, Takashi
    Zou, Rong
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2017, 450 (01) : 152 - 168
  • [27] PERIODIC-SOLUTIONS TO REACTION-DIFFUSION EQUATIONS
    GREENBERG, JM
    SIAM JOURNAL ON APPLIED MATHEMATICS, 1976, 30 (02) : 199 - 205
  • [28] Local structure of solutions of the reaction-diffusion equations
    Abdullaev, UG
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1997, 30 (05) : 3153 - 3163
  • [29] On the Steady Solutions of Fractional Reaction-Diffusion Equations
    Fazli, Hossein
    Bahrami, Fariba
    FILOMAT, 2017, 31 (06) : 1655 - 1664
  • [30] Travelling wave solutions for reaction-diffusion equations
    Li, ZY
    Wang, MX
    Wu, YP
    Ye, QX
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1997, 30 (06) : 3417 - 3426