Revealing the doping density in perovskite solar cells and its impact on device performance

被引:25
|
作者
Pena-Camargo, Francisco [1 ]
Thiesbrummel, Jarla [1 ,2 ]
Hempel, Hannes [3 ]
Musiienko, Artem [4 ]
Le Corre, Vincent M. [1 ,5 ]
Diekmann, Jonas [1 ]
Warby, Jonathan [1 ]
Unold, Thomas [3 ]
Lang, Felix [1 ]
Neher, Dieter [1 ]
Stolterfoht, Martin [1 ]
机构
[1] Univ Potsdam, Soft Matter Phys, Karl Liebknecht Str 24-25, D-14476 Potsdam, Germany
[2] Univ Oxford, Clarendon Lab, Parks Rd, Oxford OX1 3PU, England
[3] Helmholtz Zentrum Berlin Mat & Energie, Dept Struct & Dynam Energy Mat, D-14109 Berlin, Germany
[4] Helmholtz Zentrum Berlin Mat & Energie, Inst Silizium Photovolta, Kekulestr 5, D-12489 Berlin, Germany
[5] Friedrich Alexander Univ Erlangen Nurnberg, Inst Mat Elect & Energy Technol, D-91058 Erlangen, Germany
来源
APPLIED PHYSICS REVIEWS | 2022年 / 9卷 / 02期
关键词
CHARGE-TRANSPORT; DEFECTS; POLYCRYSTALLINE; QUANTIFICATION; CONDUCTIVITY; MECHANISM;
D O I
10.1063/5.0085286
中图分类号
O59 [应用物理学];
学科分类号
摘要
Traditional inorganic semiconductors can be electronically doped with high precision. Conversely, there is still conjecture regarding the assessment of the electronic doping density in metal-halide perovskites, not to mention of a control thereof. This paper presents a multifaceted approach to determine the electronic doping density for a range of different lead-halide perovskite systems. Optical and electrical characterization techniques, comprising intensity-dependent and transient photoluminescence, AC Hall effect, transfer-length-methods, and charge extraction measurements were instrumental in quantifying an upper limit for the doping density. The obtained values are subsequently compared to the electrode charge per cell volume under short-circuit conditions ( CUbi/eV), which amounts to roughly 10(16) cm(-3). This figure of merit represents the critical limit below which doping-induced charges do not influence the device performance. The experimental results consistently demonstrate that the doping density is below this critical threshold 10(12) cm(-3), which means << CUbi / e V) for all common lead-based metal-halide perovskites. Nevertheless, although the density of doping-induced charges is too low to redistribute the built-in voltage in the perovskite active layer, mobile ions are present in sufficient quantities to create space-charge-regions in the active layer, reminiscent of doped pn-junctions. These results are well supported by drift-diffusion simulations, which confirm that the device performance is not affected by such low doping densities. Published under an exclusive license by AIP Publishing.
引用
收藏
页数:11
相关论文
共 50 条
  • [41] 3-Chloroperoxybenzoic acid doping spiroOMeTAD for improving the performance of perovskite solar cells
    Chen, Qi
    Wu, Jihuai
    Wang, Xiaobing
    Li, Guodong
    Song, Zeyu
    Xu, Yuan
    Deng, Chunyan
    Sun, Yitian Du Weihai
    Lan, Zhang
    CHEMICAL ENGINEERING JOURNAL, 2022, 450
  • [42] Improved current density of inverted perovskite solar cells via hole transport layer doping
    Murugan, Santhosh
    Liu, Xuewen
    Lee, Eun-Cheol
    JOURNAL OF MATERIALS CHEMISTRY C, 2024, 12 (20) : 7278 - 7285
  • [43] Revealing the strain-associated physical mechanisms impacting the performance and stability of perovskite solar cells
    Meng, Wei
    Zhang, Kaicheng
    Osvet, Andres
    Zhang, Jiyun
    Gruber, Wolfgang
    Forberich, Karen
    Meyer, Bernd
    Heiss, Wolfgang
    Unruh, Tobias
    Li, Ning
    Brabec, Christoph J.
    JOULE, 2022, 6 (02) : 458 - +
  • [44] Revealing the Role of Methylammonium Chloride for Improving the Performance of 2D Perovskite Solar Cells
    Zheng, Fei
    Zuo, Chuantian
    Niu, Mengsi
    Zhou, Chunhua
    Bradley, Siobhan J.
    Hall, Christopher R.
    Xu, Weilong
    Wen, Xiaoming
    Hao, Xiaotao
    Gao, Mei
    Smith, Trevor A.
    Ghiggino, Kenneth P.
    ACS APPLIED MATERIALS & INTERFACES, 2020, 12 (23) : 25980 - 25990
  • [45] Tuning the band gap edges of perovskite material by Cd doping for achieving high current density in perovskite solar cells
    Attia, A.
    Hussain, Saddam
    Khan, M. I.
    Sadaf, Asma
    Seliem, Amal F.
    Mohammed, Ayeda Y. A.
    Ibrahim, Mohamed M.
    CERAMICS INTERNATIONAL, 2023, 49 (12) : 20465 - 20469
  • [46] Device stability of perovskite solar cells - A review
    Asghar, M. I.
    Zhang, J.
    Wang, H.
    Lund, P. D.
    RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2017, 77 : 131 - 146
  • [47] Impact of Perovskite Subcell Breakdown on the Performance of Perovskite/Perovskite/Silicon Triple-Junction Solar Cells
    Heydarian, Maryamsadat
    Bett, Alexander J.
    Messmer, Christoph
    Aulich, Johanna
    Fischer, Oliver
    Heydarian, Minasadat
    Gupta, Yashika
    Schulze, Patricia S. C.
    Borchert, Juliane
    Schindler, Florian
    Schubert, Martin C.
    Glunz, Stefan W.
    SOLAR RRL, 2024, 8 (16):
  • [48] Material and Device Stability in Perovskite Solar Cells
    Kim, Hui-Seon
    Seo, Ja-Young
    Park, Nam-Gyu
    CHEMSUSCHEM, 2016, 9 (18) : 2528 - 2540
  • [49] Oxygen-Induced Doping of Spiro-MeOTAD in Solid-State Dye-Sensitized Solar Cells and Its Impact on Device Performance
    Cappel, Ute B.
    Daeneke, Torben
    Bach, Udo
    NANO LETTERS, 2012, 12 (09) : 4925 - 4931
  • [50] Enhancing the photovoltaic performance of planar heterojunction perovskite solar cells by doping the perovskite layer with alkali metal ions
    Chang, Jingjing
    Lin, Zhenhua
    Zhu, Hai
    Isikgor, Furkan Halis
    Xu, Qing-Hua
    Zhang, Chunfu
    Hao, Yue
    Ouyang, Jianyong
    JOURNAL OF MATERIALS CHEMISTRY A, 2016, 4 (42) : 16546 - 16552