Revealing the doping density in perovskite solar cells and its impact on device performance

被引:25
|
作者
Pena-Camargo, Francisco [1 ]
Thiesbrummel, Jarla [1 ,2 ]
Hempel, Hannes [3 ]
Musiienko, Artem [4 ]
Le Corre, Vincent M. [1 ,5 ]
Diekmann, Jonas [1 ]
Warby, Jonathan [1 ]
Unold, Thomas [3 ]
Lang, Felix [1 ]
Neher, Dieter [1 ]
Stolterfoht, Martin [1 ]
机构
[1] Univ Potsdam, Soft Matter Phys, Karl Liebknecht Str 24-25, D-14476 Potsdam, Germany
[2] Univ Oxford, Clarendon Lab, Parks Rd, Oxford OX1 3PU, England
[3] Helmholtz Zentrum Berlin Mat & Energie, Dept Struct & Dynam Energy Mat, D-14109 Berlin, Germany
[4] Helmholtz Zentrum Berlin Mat & Energie, Inst Silizium Photovolta, Kekulestr 5, D-12489 Berlin, Germany
[5] Friedrich Alexander Univ Erlangen Nurnberg, Inst Mat Elect & Energy Technol, D-91058 Erlangen, Germany
来源
APPLIED PHYSICS REVIEWS | 2022年 / 9卷 / 02期
关键词
CHARGE-TRANSPORT; DEFECTS; POLYCRYSTALLINE; QUANTIFICATION; CONDUCTIVITY; MECHANISM;
D O I
10.1063/5.0085286
中图分类号
O59 [应用物理学];
学科分类号
摘要
Traditional inorganic semiconductors can be electronically doped with high precision. Conversely, there is still conjecture regarding the assessment of the electronic doping density in metal-halide perovskites, not to mention of a control thereof. This paper presents a multifaceted approach to determine the electronic doping density for a range of different lead-halide perovskite systems. Optical and electrical characterization techniques, comprising intensity-dependent and transient photoluminescence, AC Hall effect, transfer-length-methods, and charge extraction measurements were instrumental in quantifying an upper limit for the doping density. The obtained values are subsequently compared to the electrode charge per cell volume under short-circuit conditions ( CUbi/eV), which amounts to roughly 10(16) cm(-3). This figure of merit represents the critical limit below which doping-induced charges do not influence the device performance. The experimental results consistently demonstrate that the doping density is below this critical threshold 10(12) cm(-3), which means << CUbi / e V) for all common lead-based metal-halide perovskites. Nevertheless, although the density of doping-induced charges is too low to redistribute the built-in voltage in the perovskite active layer, mobile ions are present in sufficient quantities to create space-charge-regions in the active layer, reminiscent of doped pn-junctions. These results are well supported by drift-diffusion simulations, which confirm that the device performance is not affected by such low doping densities. Published under an exclusive license by AIP Publishing.
引用
收藏
页数:11
相关论文
共 50 条
  • [1] Effect of absorber layer, hole transport layer thicknesses, and its doping density on the performance of perovskite solar cells by device simulation
    Bag, Atanu
    Radhakrishnan, R.
    Nekovei, Reza
    Jeyakumar, R.
    SOLAR ENERGY, 2020, 196 : 177 - 182
  • [2] Photon recycling in perovskite solar cells and its impact on device design
    Raja, Waseem
    De Bastiani, Michele
    Allen, Thomas G.
    Aydin, Erkan
    Razzaq, Arsalan
    Rehman, Atteq Ur
    Ugur, Esma
    Babayigit, Aslihan
    Subbiah, Anand S.
    Isikgor, Furkan H.
    De Wolf, Stefaan
    NANOPHOTONICS, 2021, 10 (08) : 2023 - 2042
  • [3] Perovskite-based solar cells: impact of morphology and device architecture on device performance
    Salim, Teddy
    Sun, Shuangyong
    Abe, Yuichiro
    Krishna, Anurag
    Grimsdale, Andrew C.
    Lam, Yeng Ming
    JOURNAL OF MATERIALS CHEMISTRY A, 2015, 3 (17) : 8943 - 8969
  • [4] Revealing the impact of buried interfacial nanostructure in perovskite solar cells
    Zheng, Yichu
    Yu, Dongfang
    Li, Boyan
    Yang, Shuang
    SOLAR ENERGY, 2024, 268
  • [5] Detrimental effect of silver doping in spiro-MeOTAD on the device performance of perovskite solar cells
    Liang, Jing-Jing
    Li, Meng
    Zhu, Jun-Yi
    Zong, Hao
    Zhang, Yue
    Jain, Sagar M.
    Wang, Zhao-Kui
    ORGANIC ELECTRONICS, 2019, 69 : 343 - 347
  • [6] Revealing the Role of Thiocyanate for Improving the Performance of Perovskite Solar Cells
    Lin, Pei-Ying
    Lin, Chen-Fu
    Chiu, Yueh-Ya
    Chen, Hong-Hsueh
    Li, Ming-Hsien
    Raja, Rajendran
    Wu, Chun-Sheng
    Hou, Cheng-Hung
    Hsiao, Silver Sung-Yun
    Shyue, Jing-Jong
    Lee, Der-Chuen
    Ho, Sheng-Zhu
    Chen, Yi-Chun
    Chen, Peter
    ACS APPLIED ENERGY MATERIALS, 2022, 6 (01): : 79 - 88
  • [7] Revealing the impact of the host-salt non-stoichiometry on the performance of perovskite solar cells
    Kumar, Amit
    Dhamaniya, Bhanu Pratap
    Gupta, Shailendra Kumar
    Chhillar, Priyanka
    Chandratre, Kartiki
    Pathak, Sandeep Kumar
    Karak, Supravat
    SUSTAINABLE ENERGY & FUELS, 2023, 7 (17) : 4179 - 4188
  • [8] Potassium Doping Effect on the Photovoltaic Performance of Perovskite Solar Cells
    Vildanova, M. F.
    Nikolskaia, A. B.
    Kozlov, S. S.
    Karyagina, O. K.
    Shevaleevskiy, O. I.
    TECHNICAL PHYSICS LETTERS, 2020, 46 (03) : 231 - 234
  • [9] Potassium Doping Effect on the Photovoltaic Performance of Perovskite Solar Cells
    M. F. Vildanova
    A. B. Nikolskaia
    S. S. Kozlov
    O. K. Karyagina
    O. I. Shevaleevskiy
    Technical Physics Letters, 2020, 46 : 231 - 234
  • [10] Passivation strategies for enhancing device performance of perovskite solar cells
    Wu, Zhifang
    Bi, Enbing
    Ono, Luis K.
    Li, Dengbing
    Bakr, Osman M.
    Yan, Yanfa
    Qi, Yabing
    NANO ENERGY, 2023, 115