Orthogonal double covers of 4-regular circulant graphs

被引:0
|
作者
Sampathkumar, R. [1 ]
Sriram, V. [1 ]
机构
[1] Annamalai Univ, Dept Math, Annamalainagar 608002, Tamil Nadu, India
关键词
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
An orthogonal double cover (ODC) of a graph H is a collection g = {G(v) : v is an element of V(H)} of vertical bar V(H)vertical bar subgraphs of H such that every edge of H is contained in exactly two members of g and for any two members G(u) and G(v) in g, vertical bar E(G(u)) boolean AND E(Gu)vertical bar is 1 if u and v are adjacent in H and it is 0 if u and v are nonadjacent in H. An ODC g of H is cyclic if the cyclic group of order vertical bar V(H)vertical bar is a subgroup of the automorphism group of 0; otherwise it is noncyclic. Recently, Sampathkumar and Srinivasan settled the problem of the existence of cyclic ODCs of 4-regular circulant graphs. In this paper, we are concerned with noncyclic ODCs of such graphs, whenever a cyclic ODC does not exist.
引用
收藏
页码:85 / 95
页数:11
相关论文
共 50 条
  • [31] A complete classification of 5-regular circulant graphs that allow cyclic orthogonal double covers (Jan, 10.1007/s10801-020-01008-4, 2021)
    Higazy, M.
    Scapellato, R.
    Hamed, Y. S.
    JOURNAL OF ALGEBRAIC COMBINATORICS, 2021, 54 (03) : 913 - 914
  • [32] Domination in 4-Regular Graphs with Girth 3
    Mohanapriya, N.
    Kumar, S. Vimal
    Vivin, J. Vernold
    Venkatachalam, M.
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES INDIA SECTION A-PHYSICAL SCIENCES, 2015, 85 (02) : 259 - 264
  • [33] A note on 4-regular distance magic graphs
    Kovar, Petr
    Froncek, Dalibor
    Kovarova, Tereza
    AUSTRALASIAN JOURNAL OF COMBINATORICS, 2012, 54 : 127 - 132
  • [34] 4-regular bipartite matching extendable graphs
    Wang, Xiumei
    Feng, Aifen
    Lin, Yixun
    ARS COMBINATORIA, 2013, 110 : 113 - 128
  • [35] H-colorings for 4-regular graphs
    Malnegro, Analen A.
    Ozeki, Kenta
    DISCRETE MATHEMATICS, 2024, 347 (03)
  • [36] Domination in 4-Regular Graphs with Girth 3
    N. Mohanapriya
    S. Vimal Kumar
    J. Vernold Vivin
    M. Venkatachalam
    Proceedings of the National Academy of Sciences, India Section A: Physical Sciences, 2015, 85 : 259 - 264
  • [37] FACTORIZATIONS OF 4-REGULAR GRAPHS AND PETERSENS THEOREM
    KOUIDER, M
    SABIDUSSI, G
    JOURNAL OF COMBINATORIAL THEORY SERIES B, 1995, 63 (02) : 170 - 184
  • [38] 4-REGULAR GRAPHS WITHOUT 3-REGULAR SUBGRAPHS
    ZHANG, LM
    ANNALS OF THE NEW YORK ACADEMY OF SCIENCES, 1989, 576 : 691 - 699
  • [39] ON SOME PROPERTIES OF 4-REGULAR PLANE GRAPHS
    HORNAK, M
    JENDROL, S
    JOURNAL OF GRAPH THEORY, 1995, 20 (02) : 163 - 175
  • [40] Enumeration of labelled 4-regular planar graphs
    Noy, Marc
    Requile, Clement
    Rue, Juanjo
    PROCEEDINGS OF THE LONDON MATHEMATICAL SOCIETY, 2019, 119 (02) : 358 - 378