Estimating the shape parameter of a Pareto distribution under restrictions

被引:5
|
作者
Tripathi, Yogesh Mani [1 ]
Kumar, Somesh [2 ]
Petropoulos, Constantinos [3 ]
机构
[1] Indian Inst Technol, Dept Math, Patna 800013, Bihar, India
[2] Indian Inst Technol, Dept Math, Kharagpur 721302, W Bengal, India
[3] Univ Patras, Dept Math, Rion 26500, Greece
关键词
Restricted maximum likelihood estimator; Generalized Bayes estimator; Integral expression of risk difference; Scale invariance; Stein-type estimator; SCALE PARAMETER;
D O I
10.1007/s00184-015-0545-9
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In this paper estimation of the shape parameter of a Pareto distribution is considered under the a priori assumption that it is bounded below by a known constant. The loss function is scale invariant squared error. A class of minimax estimators is presented when the scale parameter of the distribution is known. In consequence, it has been shown that the generalized Bayes estimator with respect to the uniform prior on the truncated parameter space dominates the minimum risk equivariant estimator. By making use of a sequence of proper priors, we also show that this estimator is admissible for estimating the lower bounded shape parameter. A class of truncated linear estimators is studied as well. Some complete class results and a class of minimax estimators for the case of an unknown scale parameter are obtained. The corresponding generalized Bayes estimator is shown to be minimax in this case as well.
引用
收藏
页码:91 / 111
页数:21
相关论文
共 50 条
  • [41] Approximation (M.S.E) of the shape parameter for Pareto distribution by using the standard Bayes estimator
    Atewi, Adwea Naji
    Ali, Safaa Jawad
    Naser, Bushra Swedan
    Harhoosh, Muataz Adnan
    INTERNATIONAL JOURNAL OF NONLINEAR ANALYSIS AND APPLICATIONS, 2022, 13 (01): : 871 - 880
  • [42] Parameter estimation for 2-parameter generalized pareto distribution by POME
    Singh, VP
    Guo, H
    STOCHASTIC HYDROLOGY AND HYDRAULICS, 1997, 11 (03): : 211 - 227
  • [43] Parameter estimation for 2-parameter generalized pareto distribution by POME
    V. P. Singh
    H. Guo
    Stochastic Hydrology and Hydraulics, 1997, 11 : 211 - 227
  • [44] Estimating the mean of a lognormal population under restrictions
    Department of Mathematics, Indian Institute of Technology, Patna, India
    不详
    不详
    Int. J. Appl. Math. Stat., D09 (16-31): : 16 - 31
  • [45] Estimating the Mean of a Lognormal Population under Restrictions
    Tripathi, Yogesh Mani
    Kumar, Somesh
    Srivastava, Tanuja
    INTERNATIONAL JOURNAL OF APPLIED MATHEMATICS & STATISTICS, 2009, 15 (D09): : 16 - 31
  • [46] The Use of the Data Transformation Techniques in Estimating the Shape Parameter of the Weibull Distribution for the Wind Speed
    Kantar, Yeliz Mert
    Arik, Ibrahim
    INTERNATIONAL JOURNAL OF ENERGY OPTIMIZATION AND ENGINEERING, 2014, 3 (03) : 20 - 33
  • [47] GENERALIZED INFERENCES FOR THE COMMON SHAPE PARAMETER OF SEVERAL PARETO POPULATIONS
    Gunasekera, Sumith
    ADVANCES AND APPLICATIONS IN STATISTICS, 2012, 26 (02) : 137 - 152
  • [48] EXTREMUM OF FUNCTION OF A SMALL PARAMETER UNDER RESTRICTIONS
    KOROLIOV, VS
    VESTNIK LENINGRADSKOGO UNIVERSITETA SERIYA MATEMATIKA MEKHANIKA ASTRONOMIYA, 1983, (04): : 92 - 94
  • [49] EMPIRICAL BAYES ESTIMATION OF THE SCALE PARAMETER IN A PARETO DISTRIBUTION
    TIWARI, RC
    ZALKIKAR, JN
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 1990, 10 (03) : 261 - 270
  • [50] Parameter estimation of the Pareto distribution using a pivotal quantity
    Kim, Joseph H. T.
    Ahn, Sanghyun
    Ahn, Soohan
    JOURNAL OF THE KOREAN STATISTICAL SOCIETY, 2017, 46 (03) : 438 - 450