(0,2)-deformations and the G-Hilbert scheme

被引:0
|
作者
Gaines, Benjamin [1 ]
机构
[1] Iona Coll, Dept Math, 715 North Ave, New Rochelle, NY 10801 USA
关键词
MCKAY CORRESPONDENCE;
D O I
10.4310/ATMP.2016.v20.n5.a4
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
We study first order deformations of the tangent sheaf of resolutions of Calabi-Yau threefolds that are of the form C-3/Z(r), focusing on the cases where the orbifold has an isolated singularity. We prove a lower bound on the number of deformations for any crepant resolution of this orbifold. We show that this lower bound is achieved when the resolution used is the G-Hilbert scheme, and note that this lower bound can be found using methods from string theory. These methods lead us to a new way to construct the G-Hilbert scheme using the singlet count.
引用
收藏
页码:1083 / 1108
页数:26
相关论文
共 50 条
  • [31] SINGLET COUPLINGS AND (0,2)-MODELS
    DISTLER, J
    KACHRU, S
    NUCLEAR PHYSICS B, 1994, 430 (01) : 13 - 30
  • [32] DUALITY OF (0,2) STRING VACUA
    DISTLER, J
    KACHRU, S
    NUCLEAR PHYSICS B, 1995, 442 (1-2) : 64 - 74
  • [33] SALT IMAGINARIES, LITHIUM 0,2
    Uribe, Male
    MATERIA ARQUITECTURA, 2023, (25): : 158 - 171
  • [34] Testing the (0,2) mirror map
    Bertolini, Marco
    JOURNAL OF HIGH ENERGY PHYSICS, 2019, 2019 (01)
  • [35] Testing the (0,2) mirror map
    Marco Bertolini
    Journal of High Energy Physics, 2019
  • [36] On weighted (0,2)-type interpolation
    Lenard, Margit
    ELECTRONIC TRANSACTIONS ON NUMERICAL ANALYSIS, 2006, 25 : 206 - 223
  • [37] A proposal for nonabelian (0,2) mirrors
    Gu, Wei
    Guo, Jirui
    Sharpe, Eric
    ADVANCES IN THEORETICAL AND MATHEMATICAL PHYSICS, 2021, 25 (06) : 1549 - 1596
  • [38] Issues of heterotic (0,2) compactifications
    Blumenhagen, R
    FORTSCHRITTE DER PHYSIK-PROGRESS OF PHYSICS, 2000, 48 (1-3): : 37 - 40
  • [39] Chiral algebras of (0,2) models
    Yagi, Junya
    ADVANCES IN THEORETICAL AND MATHEMATICAL PHYSICS, 2012, 16 (01) : 1 - 37
  • [40] Classification of small (0,2)-graphs
    Brouwer, Andries E.
    JOURNAL OF COMBINATORIAL THEORY SERIES A, 2006, 113 (08) : 1636 - 1645