(0,2)-deformations and the G-Hilbert scheme

被引:0
|
作者
Gaines, Benjamin [1 ]
机构
[1] Iona Coll, Dept Math, 715 North Ave, New Rochelle, NY 10801 USA
关键词
MCKAY CORRESPONDENCE;
D O I
10.4310/ATMP.2016.v20.n5.a4
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
We study first order deformations of the tangent sheaf of resolutions of Calabi-Yau threefolds that are of the form C-3/Z(r), focusing on the cases where the orbifold has an isolated singularity. We prove a lower bound on the number of deformations for any crepant resolution of this orbifold. We show that this lower bound is achieved when the resolution used is the G-Hilbert scheme, and note that this lower bound can be found using methods from string theory. These methods lead us to a new way to construct the G-Hilbert scheme using the singlet count.
引用
收藏
页码:1083 / 1108
页数:26
相关论文
共 50 条
  • [21] (0,2) Mirror symmetry
    Blumenhagen, R
    Schimmrigk, R
    Wisskirchen, A
    NUCLEAR PHYSICS B, 1997, 486 (03) : 598 - 628
  • [22] (0,2) string compactifications
    Kreuzer, M
    NikbakhtTehrani, M
    NUCLEAR PHYSICS B, 1997, : 136 - 141
  • [23] A (0,2) mirror map
    Ilarion V. Melnikov
    M. Ronen Plesser
    Journal of High Energy Physics, 2011
  • [24] (0,2) Quantum Cohomology
    Donagi, Ron
    Guffin, Joshua
    Katz, Sheldon
    Sharpe, Eric
    STRING-MATH 2011, 2012, 85 : 83 - +
  • [25] (0,2) hybrid models
    Bertolini, Marco
    Plesser, M. Ronen
    JOURNAL OF HIGH ENERGY PHYSICS, 2018, (09):
  • [26] (0,2) hybrid models
    Marco Bertolini
    M. Ronen Plesser
    Journal of High Energy Physics, 2018
  • [27] DEFORMATIONS OF THE HILBERT SCHEME OF POINTS ON A DEL PEZZO SURFACE
    Li, Chunyi
    MOSCOW MATHEMATICAL JOURNAL, 2017, 17 (02) : 291 - 321
  • [28] Generalized hypercubes and (0,2)-graphs
    Laborde, JM
    Madani, RM
    DISCRETE MATHEMATICS, 1997, 165 : 447 - 459
  • [29] Resolving singularities in (0,2) models
    Distler, J
    Greene, BR
    Morrison, DR
    NUCLEAR PHYSICS B, 1996, 481 (1-2) : 289 - 312
  • [30] ARE (0,2) MODELS STRING MIRACLES
    DINE, M
    SEIBERG, N
    NUCLEAR PHYSICS B, 1988, 306 (01) : 137 - 159