Ultrafast solid-liquid intercalation enabled by targeted microwave energy delivery

被引:19
|
作者
Zhang, Ming-Jian [1 ,2 ]
Duan, Yandong [1 ,2 ,3 ]
Yin, Chong [2 ,4 ]
Li, Maofan [1 ]
Zhong, Hui [5 ]
Dooryhee, Eric [6 ]
Xu, Kang [7 ]
Pan, Feng [1 ]
Wang, Feng [2 ]
Bai, Jianming [6 ]
机构
[1] Peking Univ, Sch Adv Mat, Shenzhen Grad Sch, Shenzhen 518055, Peoples R China
[2] Brookhaven Natl Lab, Sustainable Energy Technol Dept, Upton, NY 11973 USA
[3] Hebei Univ Sci & Technol, Sch Sci, Shijiazhuang 050018, Hebei, Peoples R China
[4] Chinese Acad Sci, Ningbo Inst Mat Technol & Engn, Ningbo 315201, Peoples R China
[5] SUNY Stony Brook, Joint Photon Sci Inst, Stony Brook, NY 11790 USA
[6] Brookhaven Natl Lab, Natl Synchrotron Light Source 2, Upton, NY 11973 USA
[7] US Army, Energy Storage Branch, Sensor & Electron Devices Directorate, Res Lab, Adelphi, MD 20783 USA
基金
国家重点研发计划;
关键词
ASSISTED SOLVOTHERMAL SYNTHESIS; CATIONS INFRARED-SPECTROSCOPY; AB-INITIO CALCULATIONS; ORGANIC-SYNTHESIS; HIGH-CAPACITY; CATHODE MATERIALS; ION BATTERIES; CLUSTER IONS; LI; PERFORMANCE;
D O I
10.1126/sciadv.abd9472
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
In chemical reactions, the breaking and formation of chemical bonds usually need external energy to overcome the activation barriers. Conventional energy delivery transfers energy from heating sources via various media, hence losing efficiency and inducing side reactions. In contrast, microwave (MW) heating is known to be highly energy efficient through dipole interaction with polar media, but how exactly it transmits energy to initiate chemical reactions has been unknown. Here, we report a rigorous determination of energy delivery mechanisms underlying MW-enabled rapid hydrothermal synthesis, by monitoring the structure and temperature of all the involved components as solid-liquid intercalation reaction occurs using in situ synchrotron techniques. We reveal a hitherto unknown direct energy transmission between MW irradiation source and the targeted reactants, leading to greatly reduced energy waste, and so the ultrafast kinetics at low temperature. These findings open up new horizons for designing material synthesis reactions of high efficiency and precision.
引用
收藏
页数:9
相关论文
共 50 条
  • [21] Microwave-Assisted Solid-Liquid Phase Alkylation of Naphthols
    Balint, Erika
    Kovacs, Orsolya
    Drahos, Laszlo
    Keglevich, Gyoergy
    LETTERS IN ORGANIC CHEMISTRY, 2013, 10 (05) : 330 - 336
  • [22] Prediction of the solid-liquid interface energy of a multicomponent metallic alloy via a solid-liquid interface sublattice model
    Bai, Kewu
    Wang, Kun
    Sullivan, Michael
    Zhang, Yong-Wei
    JOURNAL OF ALLOYS AND COMPOUNDS, 2020, 819
  • [23] Measurement of solid-liquid interfacial energy for solid Zn in equilibrium with the ZnMg eutectic liquid
    Erol, M.
    Keslioglu, K.
    Marasli, N.
    METALLURGICAL AND MATERIALS TRANSACTIONS A-PHYSICAL METALLURGY AND MATERIALS SCIENCE, 2007, 38A (07): : 1539 - 1545
  • [24] Measurement of Solid-Liquid Interfacial Energy for Solid Zn in Equilibrium with the ZnMg Eutectic Liquid
    M. Erol
    K. Keşlioğlu
    N. Maraşli
    Metallurgical and Materials Transactions A, 2007, 38 : 1539 - 1545
  • [25] Solid-liquid interfacial energy for solid succinonitrile in equilibrium with succinonitrile dichlorobenzene eutectic liquid
    Ocak, Y.
    Akbujut, S.
    Boyuk, U.
    Erol, M.
    Keslioglu, K.
    Marasli, N.
    THERMOCHIMICA ACTA, 2006, 445 (01) : 86 - 91
  • [26] Estimation of the solid-liquid interface energy for metal elements
    Jiang, Xiaobao
    Xiao, Beibei
    Lan, Rui
    Gu, Xiaoyan
    Zhang, Xinghua
    Sheng, Hongchao
    COMPUTATIONAL MATERIALS SCIENCE, 2019, 170
  • [27] Crystal nucleation and the solid-liquid interfacial free energy
    Baidakov, Vladimir G.
    Tipeev, Azat O.
    JOURNAL OF CHEMICAL PHYSICS, 2012, 136 (07):
  • [28] The measurement of the solid-liquid surface free energy of xenon
    Stalder, I
    Bilgram, JH
    JOURNAL OF CHEMICAL PHYSICS, 2003, 118 (17): : 7981 - 7984
  • [29] Temperature and structure dependency of solid-liquid interfacial energy
    Mondal, K.
    Kumar, Ajay
    Gupta, G.
    Murty, B. S.
    ACTA MATERIALIA, 2009, 57 (11) : 3422 - 3430
  • [30] Separation of solid-liquid suspensions with ultrasonic acoustic energy
    Bekker, MC
    Meyer, JP
    Pretorius, L
    VanderMerwe, DF
    WATER RESEARCH, 1997, 31 (10) : 2543 - 2549