Crystal nucleation and the solid-liquid interfacial free energy

被引:53
|
作者
Baidakov, Vladimir G. [1 ]
Tipeev, Azat O. [1 ]
机构
[1] Russian Acad Sci, Ural Branch, Inst Thermal Phys, Ekaterinburg 620016, Russia
来源
JOURNAL OF CHEMICAL PHYSICS | 2012年 / 136卷 / 07期
基金
俄罗斯基础研究基金会;
关键词
free energy; Lennard-Jones potential; molecular dynamics method; nucleation; supercooling; surface energy; PREDICTION; DYNAMICS; KINETICS;
D O I
10.1063/1.3678214
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
We present the results of molecular dynamics simulation of crystal nucleation in a supercooled Lennard-Jones liquid. Temperature and baric dependences of the nucleation rate, the Zeldovich factor, nucleus size diffusion coefficient, the radius, and the pressure in a critical crystal nucleus are defined in computer simulation. The data obtained have been used in the framework of classical nucleation theory to calculate the effective surface energy of crystal nuclei gamma(e). It is shown that the value of gamma(e) at T = const exceeds the value of the interfacial free energy at a flat crystal-liquid interface gamma(infinity) and gamma(e) < gamma(infinity) at p = const. (C) 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.3678214]
引用
收藏
页数:9
相关论文
共 50 条
  • [1] Nucleation and the solid-liquid interfacial free energy
    Wu, DT
    Gránásy, L
    Spaepen, F
    [J]. MRS BULLETIN, 2004, 29 (12) : 945 - 950
  • [2] Nucleation and the Solid–Liquid Interfacial Free Energy
    David T. Wu
    László Gránásy
    Frans Spaepen
    [J]. MRS Bulletin, 2004, 29 : 945 - 950
  • [3] Calculation of solid-liquid interfacial free energy of silicon based on classical nucleation theory
    Wu, L. K.
    Li, Q. L.
    Xu, B.
    Liu, W.
    [J]. JOURNAL OF MATERIALS RESEARCH, 2016, 31 (23) : 3649 - 3656
  • [4] Calculation of solid-liquid interfacial free energy: A classical nucleation theory based approach
    Bai, XM
    Li, M
    [J]. JOURNAL OF CHEMICAL PHYSICS, 2006, 124 (12):
  • [5] Nucleation behavior and solid-liquid interfacial energy of polytetrahedral phases
    Holland-Moritz, D
    [J]. NUCLEATION AND GROWTH PROCESSES IN MATERIALS, 2000, 580 : 245 - 250
  • [6] Solid-liquid interfacial free energy out of equilibrium
    Cheng, Bingqing
    Tribello, Gareth A.
    Ceriotti, Michele
    [J]. PHYSICAL REVIEW B, 2015, 92 (18)
  • [7] Development of Solid-Liquid Interfacial Energy of Melt-Crystal
    Jian Zengyun
    Xu Tao
    Xu Junfeng
    Zhu Man
    Chang Fang'e
    [J]. ACTA METALLURGICA SINICA, 2018, 54 (05) : 766 - 772
  • [8] Model for the Solid-Liquid Interfacial Free Energy at High Pressures
    Sterbentz, Dane M.
    Myint, Philip C.
    Delplanque, Jean-Pierre
    Hao, Yue
    Brown, Justin L.
    Stoltzfus, Brian S.
    Belof, Jonathan L.
    [J]. LANGMUIR, 2022, 38 (32) : 9892 - 9907
  • [9] Method for computing the anisotropy of the solid-liquid interfacial free energy
    Hoyt, JJ
    Asta, M
    Karma, A
    [J]. PHYSICAL REVIEW LETTERS, 2001, 86 (24) : 5530 - 5533
  • [10] Developments in determining the anisotropy of solid-liquid interfacial free energy
    J. R. Morris
    R. E. Napolitano
    [J]. JOM, 2004, 56 : 40 - 44