PAN-CANCER PROGNOSIS PREDICTION USING MULTIMODAL DEEP LEARNING

被引:0
|
作者
Silva, Luis A. Vale [1 ]
Rohr, Karl
机构
[1] Heidelberg Univ, Biomed Comp Vis Grp, BioQuant Ctr, Heidelberg, Germany
关键词
Multi-modality fusion; Machine learning; Molecular and cellular screening;
D O I
10.1109/isbi45749.2020.9098665
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
In the age of precision medicine, cancer prognosis assessment from high-dimensional multimodal data requires powerful computational methods. We present an end-to-end multimodal Deep Learning method, named MultiSurv, for automatic patient risk prediction for a large group of 33 cancer types. The method leverages histophatology microscopy slides combined with tabular clinical information and different types of high-throughput sequencing and microarray molecular data. MultiSurv has high predictive performance over all cancer types after training on different combinations of input data modalities and it can handle missing data seamlessly. MultiSurv thus has the potential to integrate the wide variety of available patient data and assist physicians with cancer patient prognosis.
引用
收藏
页码:568 / 571
页数:4
相关论文
共 50 条
  • [41] Multimodal Deep Learning Crime Prediction Using Tweets
    Tam, Sakirin
    Tanriover, Omer Ozgur
    [J]. IEEE ACCESS, 2023, 11 : 93204 - 93214
  • [42] Application of Deep Learning in Cancer Prognosis Prediction Model
    Zhang, Heng
    Xi, Qianyi
    Zhang, Fan
    Li, Qixuan
    Jiao, Zhuqing
    Ni, Xinye
    [J]. TECHNOLOGY IN CANCER RESEARCH & TREATMENT, 2023, 22
  • [43] Application of Deep Learning in Cancer Prognosis Prediction Model
    Zhang, Heng
    Xi, Qianyi
    Zhang, Fan
    Li, Qixuan
    Jiao, Zhuqing
    Ni, Xinye
    [J]. TECHNOLOGY IN CANCER RESEARCH & TREATMENT, 2023, 22
  • [44] Application of deep learning in cancer prognosis prediction model
    Chen W.
    Wang X.
    Duan H.
    Zhang X.
    Dong T.
    Nie S.
    [J]. 1600, West China Hospital, Sichuan Institute of Biomedical Engineering (37): : 918 - 929
  • [45] Pan-cancer analyses of pyroptosis with functional implications for prognosis and immunotherapy in cancer
    Liu, Aibin
    Shen, Lin
    Li, Na
    Shen, Liangfang
    Li, Zhanzhan
    [J]. JOURNAL OF TRANSLATIONAL MEDICINE, 2022, 20 (01)
  • [46] Pan-cancer analyses of pyroptosis with functional implications for prognosis and immunotherapy in cancer
    Aibin Liu
    Lin Shen
    Na Li
    Liangfang Shen
    Zhanzhan Li
    [J]. Journal of Translational Medicine, 20
  • [47] Predicting DNA accessibility in the pan-cancer tumor genome using RNA-Seq, WGS, and deep learning
    Wnuk, Kamil
    Sudol, Jeremi
    Rabizadeh, Shahrooz
    Soon-Shiong, Patrick
    Szeto, Christopher
    Vaske, Charles
    [J]. CANCER RESEARCH, 2017, 77
  • [48] Obtaining spatially resolved tumor purity maps using deep multiple instance learning in a pan-cancer study
    Oner, Mustafa Umit
    Chen, Jianbin
    Revkov, Egor
    James, Anne
    Heng, Seow Ye
    Kaya, Arife Neslihan
    Alvarez, Jacob Josiah Santiago
    Takano, Angela
    Cheng, Xin Min
    Lim, Tony Kiat Hon
    Tan, Daniel Shao Weng
    Zhai, Weiwei
    Skanderup, Anders Jacobsen
    Sung, Wing-Kin
    Lee, Hwee Kuan
    [J]. PATTERNS, 2022, 3 (02):
  • [49] Largest-scale pan-cancer histological image dataset for semantic cell segmentation using deep learning
    Komura, Daisuke
    Onoyama, Takumi
    Shinbo, Koki
    Odaka, Hiroto
    Endo, Haruya
    Ochi, Mieko
    Katoh, Hiroto
    Ushiku, Tetsuo
    Ishikawa, Shumpei
    [J]. CANCER SCIENCE, 2023, 114 : 463 - 463
  • [50] A pan-cancer cuproptosis signature predicting immunotherapy response and prognosis
    Zhu, Xiaojing
    Zhang, Zixin
    Xiao, Yanqi
    Wang, Hao
    Zhang, Jiaxing
    Wang, Mingwei
    Jiang, Minghui
    Xu, Yan
    [J]. HELIYON, 2024, 10 (15)