Application of Deep Learning in Cancer Prognosis Prediction Model

被引:0
|
作者
Zhang, Heng [1 ,2 ,3 ,4 ]
Xi, Qianyi [1 ,2 ,3 ,4 ,5 ]
Zhang, Fan [1 ,2 ,3 ,4 ,5 ]
Li, Qixuan [1 ,2 ,3 ,4 ,5 ]
Jiao, Zhuqing [5 ]
Ni, Xinye [1 ,2 ,3 ,4 ,6 ]
机构
[1] Nanjing Med Univ, Changzhou 2 Peoples Hosp, Dept Radiotherapy Oncol, Changzhou, Peoples R China
[2] Jiangsu Prov Engn Res Ctr Med Phys, Changzhou, Peoples R China
[3] Nanjing Med Univ, Med Phys Res Ctr, Changzhou, Peoples R China
[4] Key Lab Med Phys Changzhou, Changzhou, Peoples R China
[5] Changzhou Univ, Sch Microelect & Control Engn, Changzhou, Peoples R China
[6] Nanjing Med Univ, Changzhou 2 Peoples Hosp, Dept Radiotherapy Oncol, Gehu Rd 68, Changzhou 213003, Peoples R China
关键词
deep learning; artificial intelligence; cancer prognosis prediction; cancer prognostic model; SURVIVAL; VALIDATION; DIAGNOSIS; ALGORITHM; VISION;
D O I
10.1177/15330338231199287
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
As an important branch of artificial intelligence and machine learning, deep learning (DL) has been widely used in various aspects of cancer auxiliary diagnosis, among which cancer prognosis is the most important part. High-accuracy cancer prognosis is beneficial to the clinical management of patients with cancer. Compared with other methods, DL models can significantly improve the accuracy of prediction. Therefore, this article is a systematic review of the latest research on DL in cancer prognosis prediction. First, the data type, construction process, and performance evaluation index of the DL model are introduced in detail. Then, the current mainstream baseline DL cancer prognosis prediction models, namely, deep neural networks, convolutional neural networks, deep belief networks, deep residual networks, and vision transformers, including network architectures, the latest application in cancer prognosis, and their respective characteristics, are discussed. Next, some key factors that affect the predictive performance of the model and common performance enhancement techniques are listed. Finally, the limitations of the DL cancer prognosis prediction model in clinical practice are summarized, and the future research direction is prospected. This article could provide relevant researchers with a comprehensive understanding of DL cancer prognostic models and is expected to promote the research progress of cancer prognosis prediction.
引用
收藏
页数:10
相关论文
共 50 条
  • [1] Application of Deep Learning in Cancer Prognosis Prediction Model
    Zhang, Heng
    Xi, Qianyi
    Zhang, Fan
    Li, Qixuan
    Jiao, Zhuqing
    Ni, Xinye
    [J]. TECHNOLOGY IN CANCER RESEARCH & TREATMENT, 2023, 22
  • [2] Application of deep learning in cancer prognosis prediction model
    Chen, Wen
    Wang, Xu
    Duan, Huihong
    Zhang, Xiaobing
    Dong, Ting
    Nie, Shengdong
    [J]. Shengwu Yixue Gongchengxue Zazhi/Journal of Biomedical Engineering, 2020, 37 (05): : 918 - 929
  • [3] The Application of Deep Learning in Cancer Prognosis Prediction
    Zhu, Wan
    Xie, Longxiang
    Han, Jianye
    Guo, Xiangqian
    [J]. CANCERS, 2020, 12 (03)
  • [4] Development of Biologically Interpretable Multimodal Deep Learning Model for Cancer Prognosis Prediction*
    Azher, Zarif L.
    Vaickus, Louis J.
    Salas, Lucas A.
    Christensen, Brock C.
    Levy, Joshua J.
    [J]. 37TH ANNUAL ACM SYMPOSIUM ON APPLIED COMPUTING, 2022, : 636 - 644
  • [5] Multimodal Deep Learning for Prognosis Prediction in Renal Cancer
    Schulz, Stefan
    Woerl, Ann-Christin
    Jungmann, Florian
    Glasner, Christina
    Stenzel, Philipp
    Strobl, Stephanie
    Fernandez, Aurelie
    Wagner, Daniel-Christoph
    Haferkamp, Axel
    Mildenberger, Peter
    Roth, Wilfried
    Foersch, Sebastian
    [J]. FRONTIERS IN ONCOLOGY, 2021, 11
  • [6] A deep learning model for prognosis prediction after intracranial hemorrhage
    Perez del Barrio, Amaia
    Esteve Dominguez, Anna Salut
    Menendez Fernandez-Miranda, Pablo
    Sanz Bellon, Pablo
    Rodriguez Gonzalez, David
    Lloret Iglesias, Lara
    Marques Fraguela, Enrique
    Gonzalez Mandly, Andres A.
    Vega, Jose A.
    [J]. JOURNAL OF NEUROIMAGING, 2023, 33 (02) : 218 - 226
  • [7] Superior prognosis prediction performance of deep learning for gastric cancer compared to Yonsei prognosis prediction model using Cox regression.
    Hyung, Woo Jin
    Son, Taeil
    Park, Minseok
    Lee, Hansang
    Kim, Youn Nam
    Kim, Hyoung-Il
    Kim, Jong Won
    Cheong, Jae-Ho
    Choi, Seung Ho
    Noh, Sung Hoon
    Kim, Junmo
    [J]. JOURNAL OF CLINICAL ONCOLOGY, 2017, 35 (04)
  • [8] Deep learning for prognosis and prediction in mesothelioma
    Bagot, M.
    [J]. JOURNAL OF INVESTIGATIVE DERMATOLOGY, 2020, 140 (04) : 722 - 722
  • [9] Deep Learning Analysis of the Adipose Tissue and the Prediction of Prognosis in Colorectal Cancer
    Lin, Anqi
    Qi, Chang
    Li, Mujiao
    Guan, Rui
    Imyanitov, Evgeny N.
    Mitiushkina, Natalia V.
    Cheng, Quan
    Liu, Zaoqu
    Wang, Xiaojun
    Lyu, Qingwen
    Zhang, Jian
    Luo, Peng
    [J]. FRONTIERS IN NUTRITION, 2022, 9
  • [10] Multistain deep learning for prediction of prognosis and therapy response in colorectal cancer
    Foersch, Sebastian
    Glasner, Christina
    Woerl, Ann-Christin
    Eckstein, Markus
    Wagner, Daniel-Christoph
    Schulz, Stefan
    Kellers, Franziska
    Fernandez, Aurelie
    Tserea, Konstantina
    Kloth, Michael
    Hartmann, Arndt
    Heintz, Achim
    Weichert, Wilko
    Roth, Wilfried
    Geppert, Carol
    Kather, Jakob Nikolas
    Jesinghaus, Moritz
    [J]. NATURE MEDICINE, 2023, 29 (02) : 430 - 439