Multistain deep learning for prediction of prognosis and therapy response in colorectal cancer

被引:74
|
作者
Foersch, Sebastian [1 ]
Glasner, Christina [1 ]
Woerl, Ann-Christin [1 ,2 ]
Eckstein, Markus [3 ,4 ]
Wagner, Daniel-Christoph [1 ]
Schulz, Stefan [1 ]
Kellers, Franziska [1 ,5 ]
Fernandez, Aurelie [1 ]
Tserea, Konstantina [1 ]
Kloth, Michael [1 ]
Hartmann, Arndt [3 ,4 ]
Heintz, Achim [6 ]
Weichert, Wilko [7 ]
Roth, Wilfried [1 ]
Geppert, Carol [3 ,4 ]
Kather, Jakob Nikolas [8 ,9 ,10 ]
Jesinghaus, Moritz [7 ]
机构
[1] Univ Med Ctr Mainz, Inst Pathol, Mainz, Germany
[2] Johannes Gutenberg Univ Mainz, Inst Comp Sci, Mainz, Germany
[3] Friedrich Alexander Univ Erlangen Nurnberg, Univ Hosp Erlangen, Inst Pathol, Erlangen, Germany
[4] Friedrich Alexander Univ Erlangen Nurnberg, Univ Hosp Erlangen, Comprehens Canc Ctr EMN, Erlangen, Germany
[5] Univ Hosp Schleswig Holstein, Dept Pathol, Kiel, Germany
[6] Marien Hosp Mainz, Dept Gen Visceral & Vasc Surg, Mainz, Germany
[7] Tech Univ Munich, Inst Pathol, Munich, Germany
[8] Univ Hosp RWTH Aachen, Dept Med 3, Aachen, Germany
[9] Univ Leeds, Leeds Inst Med Res St Jamess, Pathol & Data Analyt, Leeds, England
[10] Univ Hosp Marburg, Inst Pathol, Else Kroener Fresenius Ctr Digital Hlth, Marburg, Germany
关键词
TUMOR-INFILTRATING LYMPHOCYTES; SPATIAL-ORGANIZATION; IMMUNE CELLS; CLASSIFICATION; DIAGNOSIS;
D O I
10.1038/s41591-022-02134-1
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Although it has long been known that the immune cell composition has a strong prognostic and predictive value in colorectal cancer (CRC), scoring systems such as the immunoscore (IS) or quantification of intraepithelial lymphocytes are only slowly being adopted into clinical routine use and have their limitations. To address this we established and evaluated a multistain deep learning model (MSDLM) utilizing artificial intelligence (AI) to determine the AImmunoscore (AIS) in more than 1,000 patients with CRC. Our model had high prognostic capabilities and outperformed other clinical, molecular and immune cell-based parameters. It could also be used to predict the response to neoadjuvant therapy in patients with rectal cancer. Using an explainable AI approach, we confirmed that the MSDLM's decisions were based on established cellular patterns of anti-tumor immunity. Hence, the AIS could provide clinicians with a valuable decision-making tool based on the tumor immune microenvironment.
引用
收藏
页码:430 / 439
页数:22
相关论文
共 50 条
  • [1] Multistain deep learning for prediction of prognosis and therapy response in colorectal cancer
    Sebastian Foersch
    Christina Glasner
    Ann-Christin Woerl
    Markus Eckstein
    Daniel-Christoph Wagner
    Stefan Schulz
    Franziska Kellers
    Aurélie Fernandez
    Konstantina Tserea
    Michael Kloth
    Arndt Hartmann
    Achim Heintz
    Wilko Weichert
    Wilfried Roth
    Carol Geppert
    Jakob Nikolas Kather
    Moritz Jesinghaus
    [J]. Nature Medicine, 2023, 29 : 430 - 439
  • [2] Multistain deep learning as a prognostic and predictive biomarker in colorectal cancer
    Schulz, Stefan
    Jesinghaus, Moritz
    Foersch, Sebastian
    [J]. PATHOLOGIE, 2023, 44 (03): : 104 - 108
  • [3] Deep Learning Analysis of the Adipose Tissue and the Prediction of Prognosis in Colorectal Cancer
    Lin, Anqi
    Qi, Chang
    Li, Mujiao
    Guan, Rui
    Imyanitov, Evgeny N.
    Mitiushkina, Natalia V.
    Cheng, Quan
    Liu, Zaoqu
    Wang, Xiaojun
    Lyu, Qingwen
    Zhang, Jian
    Luo, Peng
    [J]. FRONTIERS IN NUTRITION, 2022, 9
  • [4] Deep learning analysis of the adipose tissue and the prediction of prognosis in colorectal cancer
    Lin, Anqi
    Zhang, Jian
    Luo, Peng
    [J]. JOURNAL OF CLINICAL ONCOLOGY, 2022, 40 (04)
  • [5] Prognosis and response to therapy in colorectal cancer
    Walker, J
    Quirke, P
    [J]. EUROPEAN JOURNAL OF CANCER, 2002, 38 (07) : 880 - 886
  • [6] Haemostatic biomarkers for prognosis and prediction of therapy response in patients with metastatic colorectal cancer
    Moik, Florian
    Posch, Florian
    Grilz, Ella
    Scheithauer, Werner
    Pabinger, Ingrid
    Prager, Gerald
    Ay, Cihan
    [J]. THROMBOSIS RESEARCH, 2020, 187 : 9 - 17
  • [7] The Application of Deep Learning in Cancer Prognosis Prediction
    Zhu, Wan
    Xie, Longxiang
    Han, Jianye
    Guo, Xiangqian
    [J]. CANCERS, 2020, 12 (03)
  • [8] Determinants of prognosis and response to therapy in colorectal cancer
    Iqbal S.
    Lenz H.-J.
    [J]. Current Oncology Reports, 2001, 3 (2) : 102 - 108
  • [9] Handcrafted versus deep learning radiomics for prediction of cancer therapy response
    Hosny, Ahmed
    Aerts, Hugo J.
    Mak, Raymond H.
    [J]. LANCET DIGITAL HEALTH, 2019, 1 (03): : E106 - E107
  • [10] Multimodal Deep Learning for Prognosis Prediction in Renal Cancer
    Schulz, Stefan
    Woerl, Ann-Christin
    Jungmann, Florian
    Glasner, Christina
    Stenzel, Philipp
    Strobl, Stephanie
    Fernandez, Aurelie
    Wagner, Daniel-Christoph
    Haferkamp, Axel
    Mildenberger, Peter
    Roth, Wilfried
    Foersch, Sebastian
    [J]. FRONTIERS IN ONCOLOGY, 2021, 11