PAN-CANCER PROGNOSIS PREDICTION USING MULTIMODAL DEEP LEARNING

被引:0
|
作者
Silva, Luis A. Vale [1 ]
Rohr, Karl
机构
[1] Heidelberg Univ, Biomed Comp Vis Grp, BioQuant Ctr, Heidelberg, Germany
关键词
Multi-modality fusion; Machine learning; Molecular and cellular screening;
D O I
10.1109/isbi45749.2020.9098665
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
In the age of precision medicine, cancer prognosis assessment from high-dimensional multimodal data requires powerful computational methods. We present an end-to-end multimodal Deep Learning method, named MultiSurv, for automatic patient risk prediction for a large group of 33 cancer types. The method leverages histophatology microscopy slides combined with tabular clinical information and different types of high-throughput sequencing and microarray molecular data. MultiSurv has high predictive performance over all cancer types after training on different combinations of input data modalities and it can handle missing data seamlessly. MultiSurv thus has the potential to integrate the wide variety of available patient data and assist physicians with cancer patient prognosis.
引用
收藏
页码:568 / 571
页数:4
相关论文
共 50 条
  • [1] DNA Methylation Markers for Pan-Cancer Prediction by Deep Learning
    Liu, Biao
    Liu, Yulu
    Pan, Xingxin
    Li, Mengyao
    Yang, Shuang
    Li, Shuai Cheng
    [J]. GENES, 2019, 10 (10)
  • [2] Multimodal Deep Learning for Prognosis Prediction in Renal Cancer
    Schulz, Stefan
    Woerl, Ann-Christin
    Jungmann, Florian
    Glasner, Christina
    Stenzel, Philipp
    Strobl, Stephanie
    Fernandez, Aurelie
    Wagner, Daniel-Christoph
    Haferkamp, Axel
    Mildenberger, Peter
    Roth, Wilfried
    Foersch, Sebastian
    [J]. FRONTIERS IN ONCOLOGY, 2021, 11
  • [3] Pan-Cancer Metastasis Prediction Based on Graph Deep Learning Method
    Xu, Yining
    Cui, Xinran
    Wang, Yadong
    [J]. FRONTIERS IN CELL AND DEVELOPMENTAL BIOLOGY, 2021, 9
  • [4] Pan-cancer integrative histology-genomic analysis via multimodal deep learning
    Chen, Richard J.
    Lu, Ming Y.
    Williamson, Drew F. K.
    Chen, Tiffany Y.
    Lipkova, Jana
    Noor, Zahra
    Shaban, Muhammad
    Shady, Maha
    Williams, Mane
    Joo, Bumjin
    Mahmood, Faisal
    [J]. CANCER CELL, 2022, 40 (08) : 865 - +
  • [5] Pan-cancer integrative histology-genomic analysis via interpretable multimodal deep learning
    Chen, Richard J.
    Lu, Ming Y.
    Shady, Maha
    Lipkova, Jana
    Chen, Tiffany
    Williamson, Drew Fabrizio
    Joo, Bumjin
    Mahmood, Faisal
    [J]. CLINICAL CANCER RESEARCH, 2021, 27 (05)
  • [6] Genomic pan-cancer classification using image-based deep learning
    Ye, Taoyu
    Li, Sen
    Zhang, Yang
    [J]. COMPUTATIONAL AND STRUCTURAL BIOTECHNOLOGY JOURNAL, 2021, 19 : 835 - 846
  • [7] Genomic pan-cancer classification using image-based deep learning
    Ye, Taoyu
    Li, Sen
    Zhang, Yang
    [J]. Computational and Structural Biotechnology Journal, 2021, 19 : 835 - 846
  • [8] Development of Biologically Interpretable Multimodal Deep Learning Model for Cancer Prognosis Prediction*
    Azher, Zarif L.
    Vaickus, Louis J.
    Salas, Lucas A.
    Christensen, Brock C.
    Levy, Joshua J.
    [J]. 37TH ANNUAL ACM SYMPOSIUM ON APPLIED COMPUTING, 2022, : 636 - 644
  • [9] Deep learning with multimodal representation for pancancer prognosis prediction
    Cheerla, Anika
    Gevaert, Olivier
    [J]. BIOINFORMATICS, 2019, 35 (14) : I446 - I454
  • [10] Extendable and explainable deep learning for pan-cancer radiogenomics research
    Liu, Qian
    Hu, Pingzhao
    [J]. CURRENT OPINION IN CHEMICAL BIOLOGY, 2022, 66