Pan-cancer integrative histology-genomic analysis via multimodal deep learning

被引:117
|
作者
Chen, Richard J. [1 ,2 ,3 ,4 ,5 ]
Lu, Ming Y. [1 ,2 ,4 ,5 ,6 ,8 ]
Williamson, Drew F. K. [1 ,2 ,4 ,5 ,8 ]
Chen, Tiffany Y. [1 ,4 ,5 ,8 ]
Lipkova, Jana [1 ,4 ,5 ]
Noor, Zahra [1 ]
Shaban, Muhammad [1 ,2 ,4 ,5 ]
Shady, Maha [1 ,3 ,4 ,5 ]
Williams, Mane [1 ,2 ,3 ,4 ,5 ]
Joo, Bumjin [1 ]
Mahmood, Faisal [1 ,2 ,4 ,5 ,7 ]
机构
[1] Harvard Med Sch, Brigham & Womens Hosp, Dept Pathol, Boston, MA USA
[2] Harvard Med Sch, Mass Gen Hosp, Dept Pathol, Boston, MA USA
[3] Harvard Med Sch, Dept Biomed Informat, Boston, MA USA
[4] Broad Inst Harvard, Canc Program, Cambridge, MA USA
[5] MIT, Cambridge, MA USA
[6] Dana Farber Harvard Canc Inst, Canc Data Sci Program, Boston, MA USA
[7] MIT, Dept Elect Engn & Comp Sci, Cambridge, MA USA
[8] Harvard Univ, Harvard Data Sci Initiat, Cambridge, MA USA
基金
美国国家科学基金会; 美国国家卫生研究院;
关键词
TARGETED THERAPY; LANDSCAPE; HETEROGENEITY; PROGNOSIS; CLASSIFICATION; ORGANIZATION; EFFICIENT; SYSTEM;
D O I
10.1016/j.ccell.2022.07.004
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
The rapidly emerging field of computational pathology has demonstrated promise in developing objective prognostic models from histology images. However, most prognostic models are either based on histology or genomics alone and do not address how these data sources can be integrated to develop joint image-omic prognostic models. Additionally, identifying explainable morphological and molecular descriptors from these models that govern such prognosis is of interest. We use multimodal deep learning to jointly examine pathology whole-slide images and molecular profile data from 14 cancer types. Our weakly supervised, multimodal deep-learning algorithm is able to fuse these heterogeneous modalities to predict outcomes and discover prognostic features that correlate with poor and favorable outcomes. We present all analyses for morphological and molecular correlates of patient prognosis across the 14 cancer types at both a disease and a patient level in an interactive open-access database to allow for further exploration, biomarker discovery, and feature assessment.
引用
收藏
页码:865 / +
页数:20
相关论文
共 50 条
  • [1] Pan-cancer integrative histology-genomic analysis via interpretable multimodal deep learning
    Chen, Richard J.
    Lu, Ming Y.
    Shady, Maha
    Lipkova, Jana
    Chen, Tiffany
    Williamson, Drew Fabrizio
    Joo, Bumjin
    Mahmood, Faisal
    [J]. CLINICAL CANCER RESEARCH, 2021, 27 (05)
  • [2] Integrative Histology-Genomic Analysis Predicts Hepatocellular Carcinoma Prognosis Using Deep Learning
    Hou, Jiaxin
    Jia, Xiaoqi
    Xie, Yaoqin
    Qin, Wenjian
    [J]. GENES, 2022, 13 (10)
  • [3] A pan-cancer PDX histology image repository with genomic and pathological annotations for deep learning analysis
    White, Brian S.
    Woo, Xing Yi
    Koc, Soner
    Sheridan, Todd
    Neuhauser, Steven B.
    Wang, Shidan
    Evrard, Yvonne A.
    Landua, John David
    Mashl, R. Jay
    Davies, Sherri R.
    Fang, Bingliang
    Raso, Maria Gabriela
    Evans, Kurt W.
    Bailey, Matthew H.
    Chen, Yeqing
    Xiao, Min
    Rubinstein, Jill
    Pour, Ali Foroughi
    Dobrolecki, Lacey Elizabeth
    Fujita, Maihi
    Fujimoto, Junya
    Xiao, Guanghua
    Fields, Ryan C.
    Mudd, Jacqueline L.
    Xu, Xiaowei
    Hollingshead, Melinda G.
    Jiwani, Shahanawaz
    Consortium, Pdxnet
    Wallace, Tiffany A.
    Moscow, Jeffrey A.
    Doroshow, James H.
    Mitsiades, Nicholas
    Kaochar, Salma
    Pan, Chong-Xian
    Chen, Moon S.
    Carvajal-Carmona, Luis G.
    Welm, Alana L.
    Welm, Bryan E.
    Govindan, Ramaswamy
    Li, Shunqiang
    Davies, Michael A.
    Roth, Jack A.
    Meric-Bernstam, Funda
    Xie, Yang
    Herlyn, Meenhard
    Ding, Li
    Lewis, Michael T.
    Bolt, Carol J.
    Dean, Dennis A.
    Chuang, Jeffrey H.
    [J]. CANCER RESEARCH, 2023, 83 (07)
  • [4] PAN-CANCER PROGNOSIS PREDICTION USING MULTIMODAL DEEP LEARNING
    Silva, Luis A. Vale
    Rohr, Karl
    [J]. 2020 IEEE 17TH INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING (ISBI 2020), 2020, : 568 - 571
  • [5] A Pan-Cancer Patient-Derived Xenograft Histology Image Repository with Genomic and Pathologic Annotations Enables Deep Learning Analysis
    White, Brian S.
    Woo, Xing Yi
    Koc, Soner
    Sheridan, Todd
    Neuhauser, Steven B.
    Wang, Shidan
    Evrard, Yvonne A.
    Chen, Li
    Pour, Ali Foroughi
    Landua, John D.
    Mashl, R. Jay
    Davies, Sherri R.
    Fang, Bingliang
    Rosa, Maria Gabriela
    Evans, Kurt W.
    Bailey, Matthew H.
    Chen, Yeqing
    Xiao, Min
    Rubinstein, Jill C.
    Sanderson, Brian J.
    Lloyd, Michael W.
    Domanskyi, Sergii
    Dobrolecki, Lacey E.
    Fujita, Maihi
    Fujimoto, Junya
    Xiao, Guanghua
    Fields, Ryan C.
    Mudd, Jacqueline L.
    Xu, Xiaowei
    Hollingshead, Melinda G.
    Jiwani, Shahanawaz
    Acevedo, Saul
    Davis-Dusenbery, Brandi N.
    Robinson, Peter N.
    Moscow, Jeffrey A.
    Doroshow, James H.
    Mitsiades, Nicholas
    Kaochar, Salma
    Pan, Chong-xian
    Carvajal-Carmona, Luis G.
    Welm, Alana L.
    Welm, Bryan E.
    Govindan, Ramaswamy
    Li, Shunqiang
    Davies, Michael A.
    Roth, Jack A.
    Meric-Bernstam, Funda
    Xie, Yang
    Herlyn, Meenhard
    Ding, Li
    [J]. CANCER RESEARCH, 2024, 84 (13) : 2060 - 2072
  • [6] Occlusion enhanced pan-cancer classification via deep learning
    Zhao, Xing
    Chen, Zigui
    Wang, Huating
    Sun, Hao
    [J]. BMC BIOINFORMATICS, 2024, 25 (01):
  • [7] Discovery of pan-cancer related genes via integrative network analysis
    Zhu, Yuan
    Zhang, Houwang
    Yang, Yuanhang
    Zhang, Chaoyang
    Le Ou-Yang
    Bai, Litai
    Deng, Minghua
    Ming Yi
    Song Liu
    Chao Wang
    [J]. BRIEFINGS IN FUNCTIONAL GENOMICS, 2022, 21 (04) : 325 - 338
  • [8] Integrative Pan-Cancer Genomic and Transcriptomic Analyses of Refractory Metastatic Cancer
    Pradat, Yoann
    Viot, Julien
    Yurchenko, Andrey A.
    Gunbin, Konstantin
    Cerbone, Luigi
    Deloger, Marc
    Grisay, Guillaume
    Verlingue, Loic
    Scott, Veronique
    Padioleau, Ismael
    Panunzi, Leonardo
    Michiels, Stefan
    Hollebecque, Antoine
    Jules-Clement, Gerome
    Mezquita, Laura
    Laine, Antoine
    Loriot, Yohann
    Besse, Benjamin
    Friboulet, Luc
    Andre, Fabrice
    Cournede, Paul-Henry
    Gautheret, Daniel
    Nikolaev, Sergey I.
    [J]. CANCER DISCOVERY, 2023, 13 (05) : 1116 - 1143
  • [9] Integrative pan-cancer genomic and transcriptomic analyses of refractory metastatic cancer
    Pradat, Yoann
    Viot, Julien
    Gunbin, Konstantin
    Yurchenko, Andrey
    Cerbone, Luigi
    Deloger, Marc
    Grisay, Guillaume
    Verlingue, Loic
    Scott, Veronique
    Padioleau, Ismael
    Panunzi, Leonardo
    Michiels, Stefan
    Hollebecque, Antoine
    Jules-Clement, Gerome
    Mezquita, Laura
    Laine, Antoine
    Loriot, Yohann
    Besse, Benjamin
    Friboulet, Luc
    Andre, Fabrice
    Cournede, Paul-Henry
    Gautheret, Daniel
    Nikolaev, Sergey
    [J]. CANCER RESEARCH, 2023, 83 (07)
  • [10] Genomic pan-cancer classification using image-based deep learning
    Ye, Taoyu
    Li, Sen
    Zhang, Yang
    [J]. COMPUTATIONAL AND STRUCTURAL BIOTECHNOLOGY JOURNAL, 2021, 19 : 835 - 846