Integrative Histology-Genomic Analysis Predicts Hepatocellular Carcinoma Prognosis Using Deep Learning

被引:8
|
作者
Hou, Jiaxin [1 ,2 ]
Jia, Xiaoqi [1 ,3 ]
Xie, Yaoqin [1 ]
Qin, Wenjian [1 ]
机构
[1] Chinese Acad Sci, Shenzhen Inst Adv Technol, Shenzhen 518055, Peoples R China
[2] Univ Chinese Acad Sci, Shenzhen Coll Adv Technol, Shenzhen 518055, Peoples R China
[3] Northeastern Univ, Sch Comp Sci & Engn, Shenyang 110819, Peoples R China
基金
中国国家自然科学基金;
关键词
multi-modality; hepatocellular carcinoma; prognosis; deep learning; HISTOPATHOLOGICAL IMAGES; CELL; CANCER; KIF18B;
D O I
10.3390/genes13101770
中图分类号
Q3 [遗传学];
学科分类号
071007 ; 090102 ;
摘要
Cancer prognosis analysis is of essential interest in clinical practice. In order to explore the prognostic power of computational histopathology and genomics, this paper constructs a multi-modality prognostic model for survival prediction. We collected 346 patients diagnosed with hepatocellular carcinoma (HCC) from The Cancer Genome Atlas (TCGA), each patient has 1-3 whole slide images (WSIs) and an mRNA expression file. WSIs were processed by a multi-instance deep learning model to obtain the patient-level survival risk scores; mRNA expression data were processed by weighted gene co-expression network analysis (WGCNA), and the top hub genes of each module were extracted as risk factors. Information from two modalities was integrated by Cox proportional hazard model to predict patient outcomes. The overall survival predictions of the multi-modality model (Concordance index (C-index): 0.746, 95% confidence interval (CI): +/- 0.077) outperformed these based on histopathology risk score or hub genes, respectively. Furthermore, in the prediction of 1-year and 3-year survival, the area under curve of the model achieved 0.816 and 0.810. In conclusion, this paper provides an effective workflow for multi-modality prognosis of HCC, the integration of histopathology and genomic information has the potential to assist clinical prognosis management.
引用
收藏
页数:15
相关论文
共 50 条
  • [1] Pan-cancer integrative histology-genomic analysis via multimodal deep learning
    Chen, Richard J.
    Lu, Ming Y.
    Williamson, Drew F. K.
    Chen, Tiffany Y.
    Lipkova, Jana
    Noor, Zahra
    Shaban, Muhammad
    Shady, Maha
    Williams, Mane
    Joo, Bumjin
    Mahmood, Faisal
    [J]. CANCER CELL, 2022, 40 (08) : 865 - +
  • [2] Pan-cancer integrative histology-genomic analysis via interpretable multimodal deep learning
    Chen, Richard J.
    Lu, Ming Y.
    Shady, Maha
    Lipkova, Jana
    Chen, Tiffany
    Williamson, Drew Fabrizio
    Joo, Bumjin
    Mahmood, Faisal
    [J]. CLINICAL CANCER RESEARCH, 2021, 27 (05)
  • [3] Integrative genomic analysis of mouse and human hepatocellular carcinoma
    Dow, Michelle
    Pyke, Rachel M.
    Tsui, Brian Y.
    Alexandrov, Ludmil B.
    Nakagawa, Hayato
    Taniguchi, Koji
    Seki, Ekihiro
    Harismendy, Olivier
    Shalapour, Shabnam
    Karin, Michael
    Carter, Hannah
    Font-Burgada, Joan
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2018, 115 (42) : E9879 - E9888
  • [4] Integrative Analysis of Histopathological Images and Genomic Data Predicts Clear Cell Renal Cell Carcinoma Prognosis
    Cheng, Jun
    Zhang, Jie
    Han, Yatong
    Wang, Xusheng
    Ye, Xiufen
    Meng, Yuebo
    Parwani, Anil
    Han, Zhi
    Feng, Qianjin
    Huang, Kun
    [J]. CANCER RESEARCH, 2017, 77 (21) : E91 - E100
  • [5] Prediction of prognosis in hepatocellular carcinoma using machine learning based on genomic expression data
    Wang, Fengyan
    Xue, Changqing
    [J]. JOURNAL OF GASTROENTEROLOGY AND HEPATOLOGY, 2023, 38 : 49 - 50
  • [6] Prediction of prognosis in hepatocellular carcinoma using machine learning based on genomic expression data
    Wang, Fengyan
    Xue, Changqing
    [J]. JOURNAL OF GASTROENTEROLOGY AND HEPATOLOGY, 2023, 38 : 49 - 50
  • [7] Microenvironmental Heterogeneity Parallels Breast Cancer Progression: A Histology-Genomic Integration Analysis
    Natrajan, Rachael
    Sailem, Heba
    Mardakheh, Faraz K.
    Garcia, Mar Arias
    Tape, Christopher J.
    Dowsett, Mitch
    Bakal, Chris
    Yuan, Yinyin
    [J]. PLOS MEDICINE, 2016, 13 (02):
  • [8] Comprehensive and Integrative Genomic Characterization of Hepatocellular Carcinoma
    Ally, Adrian
    Balasundaram, Miruna
    Carlsen, Rebecca
    Chuah, Eric
    Clarke, Amanda
    Dhalla, Noreen
    Holt, Robert A.
    Jones, Steven J. M.
    Lee, Darlene
    Ma, Yussanne
    Marra, Marco A.
    Mayo, Michael
    Moore, Richard A.
    Mungall, Andrew J.
    Schein, Jacqueline E.
    Sipahimalani, Payal
    Tam, Angela
    Thiessen, Nina
    Cheung, Dorothy
    Wong, Tina
    Brooks, Denise
    Robertson, A. Gordon
    Bowlby, Reanne
    Mungall, Karen
    Sadeghi, Sara
    Xi, Liu
    Covington, Kyle
    Shinbrot, Eve
    Wheeler, David A.
    Gibbs, Richard A.
    Donehower, Lawrence A.
    Wang, Linghua
    Bowen, Jay
    Gastier-Foster, Julie M.
    Gerken, Mark
    Helsel, Carmen
    Leraas, Kristen M.
    Lichtenberg, Tara M.
    Ramirez, Nilsa C.
    Wise, Lisa
    Zmuda, Erik
    Gabriel, Stacey B.
    Meyerson, Matthew
    Cibulskis, Carrie
    Murray, Bradley A.
    Shih, Juliann
    Beroukhim, Rameen
    Cherniack, Andrew D.
    Schumacher, Steven E.
    Saksena, Gordon
    [J]. CELL, 2017, 169 (07) : 1327 - +
  • [9] Comprehensive Genetic Analysis of Follicular Thyroid Carcinoma Predicts Prognosis Independent of Histology
    Nicolson, Norman G.
    Murtha, Timothy D.
    Dong, Weilai
    Paulsson, Johan O.
    Choi, Jungmin
    Barbieri, Andrea L.
    Brown, Taylor C.
    Kunstman, John W.
    Larsson, Catharina
    Prasad, Manju L.
    Korah, Reju
    Lifton, Richard P.
    Juhlin, C. Christofer
    Carling, Tobias
    [J]. JOURNAL OF CLINICAL ENDOCRINOLOGY & METABOLISM, 2018, 103 (07): : 2640 - 2650
  • [10] Integrative Genomic Analysis Identifies the Core Transcriptional Hallmarks of Human Hepatocellular Carcinoma
    Allain, Coralie
    Angenard, Gaelle
    Clement, Bruno
    Coulouarn, Cedric
    [J]. CANCER RESEARCH, 2016, 76 (21) : 6374 - 6381