AN EXPLICIT REPRESENTATION AND ENUMERATION FOR NEGACYCLIC CODES OF LENGTH 2kn OVER Z4 + uZ4

被引:6
|
作者
Cao, Yuan [1 ,2 ,3 ]
Cao, Yonglin [1 ]
Dinh, Hai Q. [4 ,5 ]
Bandi, Ramakrishna [6 ]
Fu, Fang-Wei [7 ,8 ]
机构
[1] Shandong Univ Technol, Sch Math & Stat, Zibo 255091, Shandong, Peoples R China
[2] Hubei Univ, Key Lab Appl Math, Fac Math & Stat, Wuhan 430062, Peoples R China
[3] Changsha Univ Sci & Technol, Sch Math & Stat, Changsha 410114, Hunan, Peoples R China
[4] Ton Duc Thang Univ, Div Computat Math & Engn, Inst Computat Sci, Ho Chi Minh City, Vietnam
[5] Ton Duc Thang Univ, Fac Math & Stat, Ho Chi Minh City, Vietnam
[6] Dr SPM IIIT Naya Raipur, Dept Math, Atal Nagar 493661, India
[7] Nankai Univ, Tianjin Key Lab Network & Data Secur Technol, Chern Inst Math, Tianjin 300071, Peoples R China
[8] Nankai Univ, Tianjin Key Lab Network & Data Secur Technol, LPMC, Tianjin 300071, Peoples R China
基金
中国国家自然科学基金;
关键词
Negacyclic codes; Mass formula; Galois rings; finite chain rings; CYCLIC CODES; CONSTACYCLIC CODES; CONCATENATED STRUCTURE; RINGS;
D O I
10.3934/amc.2020067
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
In this paper, we give an explicit representation and enumeration for negacyclic codes of length 2(k)n over the local non-principal ideal ring R = Z(4) + uZ(4) (u(2) = 0), where k, n are arbitrary positive integers and n is odd. In particular, we present all distinct negacyclic codes of length 2(k) over R precisely. Moreover, we provide an exact mass formula for the number of negacyclic codes of length 2(k)n over R and correct several mistakes in some literatures.
引用
收藏
页码:291 / 309
页数:19
相关论文
共 50 条
  • [41] A study on structure of codes over Z4
    Karthick, G.
    [J]. COMMUNICATIONS IN COMBINATORICS AND OPTIMIZATION, 2024, 9 (03) : 567 - 578
  • [42] ON THE LINEAR CODES OVER THE RING Z4
    Dertli, Abdullah
    Cengellenmis, Yasemin
    [J]. COMMUNICATIONS FACULTY OF SCIENCES UNIVERSITY OF ANKARA-SERIES A1 MATHEMATICS AND STATISTICS, 2019, 68 (01): : 809 - 823
  • [43] On double cyclic codes over Z4
    Gao, Jian
    Shi, Minjia
    Wu, Tingting
    Fu, Fang-Wei
    [J]. FINITE FIELDS AND THEIR APPLICATIONS, 2016, 39 : 233 - 250
  • [44] CANONIZATION OF LINEAR CODES OVER Z4
    Feulner, Thomas
    [J]. ADVANCES IN MATHEMATICS OF COMMUNICATIONS, 2011, 5 (02) : 245 - 266
  • [45] Hulls of cyclic codes over Z4
    Jitman, Somphong
    Sangwisut, Ekkasit
    Udomkavanich, Patanee
    [J]. DISCRETE MATHEMATICS, 2020, 343 (0I)
  • [46] Self-dual cyclic codes over Z4 of length 4n
    Cao, Yuan
    Cao, Yonglin
    Fu, Fang-Wei
    Wang, Guidong
    [J]. APPLICABLE ALGEBRA IN ENGINEERING COMMUNICATION AND COMPUTING, 2022, 33 (01) : 21 - 51
  • [47] Infinite families of MDR cyclic codes over Z4 via constacyclic codes over Z4[u]/⟨u2-1⟩
    Han, Nayoung
    Kim, Bohyun
    Kim, Boran
    Lee, Yoonjin
    [J]. DISCRETE MATHEMATICS, 2020, 343 (03)
  • [48] The rank of Z4 cyclic codes of length 2e
    Abualrub, T
    Ghrayeb, A
    Oehmke, RH
    [J]. ISCCSP : 2004 FIRST INTERNATIONAL SYMPOSIUM ON CONTROL, COMMUNICATIONS AND SIGNAL PROCESSING, 2004, : 651 - 654
  • [49] On the generators of Z4 cyclic codes of length 2e
    Abualrub, T
    Oehmke, R
    [J]. IEEE TRANSACTIONS ON INFORMATION THEORY, 2003, 49 (09) : 2126 - 2133
  • [50] On the Construction of Some Type II Codes over Z 4×Z4
    Ederlina G. Nocon
    [J]. Designs, Codes and Cryptography, 2003, 30 : 301 - 323