Stationary solitary and kink solutions in the helicoidal Peyrard-Bishop model of DNA molecule

被引:8
|
作者
Zdravkovic, S. [1 ]
Chevizovich, D. [1 ]
Bugay, A. N. [2 ]
Maluckov, A. [1 ]
机构
[1] Univ Beogradu, Inst Nukl Nauke Vinca, Belgrade 11001, Serbia
[2] Joint Inst Nucl Res, Joliot Curie 6, Dubna 141980, Moscow Region, Russia
基金
俄罗斯科学基金会;
关键词
TRAVELING-WAVE SOLUTIONS; SIMPLEST EQUATION METHOD; TANH-FUNCTION METHOD; NONLINEAR DYNAMICS; CHAIN MODEL; EXCITATIONS; SOLITONS; MECHANISM;
D O I
10.1063/1.5090962
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study nonlinear dynamics of the DNA molecule relying on a helicoidal Peyrard-Bishop model. We look for traveling wave solutions and show that a continuum approximation brings about kink solitons moving along the chain. This statement is supported by the numerical solution of a relevant dynamical equation of motion. Finally, we argue that an existence of both kinks and localized modulated solitons (breathers) could be a useful tool to describe DNA-RNA transcription.
引用
收藏
页数:6
相关论文
共 50 条
  • [41] Formation, control, and dynamics of N localized structures in the Peyrard-Bishop model
    Zamora-Sillero, Elias
    Shapovalov, A. V.
    Esteban, Francisco J.
    PHYSICAL REVIEW E, 2007, 76 (06):
  • [42] Accurate prediction of DNA opening profiles by Peyrard-Bishop nonlinear dynamic simulations
    Choi, C. H.
    Kalosakas, G.
    Rasmussen, K. O.
    Bishop, A. R.
    Usheva, A.
    PROCEEDINGS OF THE FOURTH INTERNATIONAL CONFERENCE ON BIOINFORMATICS OF GENOME REGULATION AND STRUCTURE, VOL 1, 2004, : 46 - 49
  • [43] New optical soliton solutions via two distinctive schemes for the DNA Peyrard-Bishop equation in fractal order
    Ouahid, Loubna
    Abdou, M. A.
    Owyed, S.
    Kumar, Sachin
    MODERN PHYSICS LETTERS B, 2021, 35 (26):
  • [44] Forming localized waves of the nonlinearity of the DNA dynamics arising in oscillator-chain of Peyrard-Bishop model
    Manafian, Jalil
    Ilhan, Onur Alp
    Mohammed, Sizar Abid
    AIMS MATHEMATICS, 2020, 5 (03): : 2461 - 2483
  • [45] Breather dynamics in the Peyrard–Bishop DNA model
    M. I. Fakhretdinov
    F. K. Zakir’yanov
    Russian Physics Journal, 2012, 54 : 1304 - 1310
  • [46] Soliton solutions for fractional DNA Peyrard-Bishop equation via the extended-(G′/G2)-expansion method
    Akram, Ghazala
    Arshed, Saima
    Imran, Zainab
    PHYSICA SCRIPTA, 2021, 96 (09)
  • [47] Single-molecule unzippering experiments on DNA and Peyrard-Bishop-Dauxois model
    Zdravkovic, S
    Sataric, MV
    PHYSICAL REVIEW E, 2006, 73 (02):
  • [48] The modulation instability analysis and generalized fractional propagating patterns of the Peyrard-Bishop DNA dynamical equation
    Asjad, Muhammad Imran
    Faridi, Waqas Ali
    Alhazmi, Sharifah E.
    Hussanan, Abid
    OPTICAL AND QUANTUM ELECTRONICS, 2023, 55 (03)
  • [49] Acoustic and Optical Soliton Excitations in the Peyrard-Bishop Model of DNA Dynamics with Alternating A-T and G-C Base Pairs
    Tabi, Conrad B.
    Mohamadou, Alidou
    Kofane, Timoleon C.
    JOURNAL OF COMPUTATIONAL AND THEORETICAL NANOSCIENCE, 2008, 5 (11) : 2201 - 2209
  • [50] Heterogeneity and chaos in the Peyrard-Bishop-Dauxois DNA model
    Hillebrand, M.
    Kalosakas, G.
    Schwellnus, A.
    Skokos, Ch
    PHYSICAL REVIEW E, 2019, 99 (02)