On the Cyclicity of the Unramified Iwasawa Modules of the Maximal Multiple Zp-Extensions Over Imaginary Quadratic Fields

被引:0
|
作者
Miura, Takashi [1 ]
Murakami, Kazuaki [2 ]
Okano, Keiji [3 ]
Otsuki, Rei [4 ]
机构
[1] Natl Inst Technol, Tsuruoka Coll, Dept Creat Engn, 104 Sawada, Inooka, Yamagata 9978511, Japan
[2] Toho Univ, Dept Informat Sci, 2-2-1 Miyama, Funabashi, Chiba 2748510, Japan
[3] Tsuru Univ, Dept Teacher Educ, 3-8-1 Tahara, Tsuru, Yamanashi 4020054, Japan
[4] Keio Univ, Dept Math, 3-14-1 Hiyoshi,Kouhoku Ku, Yokohama, 2238522, Japan
来源
JOURNAL DE THEORIE DES NOMBRES DE BORDEAUX | 2022年 / 34卷 / 03期
关键词
D O I
10.5802/jtnb.1232
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For an odd prime number p, we study the number of generators of the unramified Iwasawa modules of the maximal multiple Z(p)-extensions over the Iwasawa algebra. In our previous paper, under several assumptions for an imaginary quadratic field, we obtained a necessary and sufficient condition for the cyclicity of the Iwasawa module over the Iwasawa algebra. The present work provides computational methods and numerical examples of Iwasawa modules that are cyclic as modules over the Iwasawa algebra. We remark that our methods do not require the assumption that Greenb erg's generalized conjecture holds.
引用
收藏
页码:881 / 902
页数:23
相关论文
共 50 条