Let p be an odd prime number which splits into two distinct primes in an imaginary quadratic field K. Then K has certain kinds of noncyclotomic Z(p)-extensions which are constructed through ray class fields with respect to a prime ideal lying above p. We try to show that Iwasawa invariants p and A both vanish for these specfic noncyclotomic Z(p)-extensions.
机构:
Georg August Univ Gottingen, Math Inst, Bunsenstr 3-5, D-37073 Gottingen, GermanyGeorg August Univ Gottingen, Math Inst, Bunsenstr 3-5, D-37073 Gottingen, Germany
Crisan, Vlad
Mueller, Katharina
论文数: 0引用数: 0
h-index: 0
机构:
Georg August Univ Gottingen, Math Inst, Bunsenstr 3-5, D-37073 Gottingen, GermanyGeorg August Univ Gottingen, Math Inst, Bunsenstr 3-5, D-37073 Gottingen, Germany
机构:
Keio Univ, Grad Sch Sci & Engn, Dept Math Sci, Kohoku Ku, Yokohama, Kanagawa 2238522, JapanKeio Univ, Grad Sch Sci & Engn, Dept Math Sci, Kohoku Ku, Yokohama, Kanagawa 2238522, Japan
机构:
Waseda Univ, Sch Sci & Engn, Dept Math Sci, Shinjuku Ku, Tokyo 1698555, JapanWaseda Univ, Sch Sci & Engn, Dept Math Sci, Shinjuku Ku, Tokyo 1698555, Japan