Galois coinvariants of the unramified Iwasawa modules of multiple Zp-extensions

被引:0
|
作者
Miura, Takashi [1 ]
Murakami, Kazuaki [2 ]
Okano, Keiji [3 ]
Otsuki, Rei [4 ]
机构
[1] Tsuruoka Coll, Natl Inst Technol, Dept Creat Engn, 104 Sawada, Tsuruoka, Yamagata 9978511, Japan
[2] Keio Univ, Dept Math Sci, Grad Sch Sci & Engn, Kohoku Ku, Yokohama, Kanagawa 2238522, Japan
[3] Tsuru Univ, Dept Teacher Educ, 3-8-1 Tahara, Tsuru Shi, Yamanashi 4020054, Japan
[4] Keio Univ, Dept Math, Kouhoku Ku, 3-14-1 Hiyoshi, Yokohama, Kanagawa 2238522, Japan
来源
ANNALES MATHEMATIQUES DU QUEBEC | 2021年 / 45卷 / 02期
关键词
Multiple Z(p)-extensions; Iwasawa modules; Characteristic ideals; INVARIANTS; LAMBDA; MU;
D O I
10.1007/s40316-020-00150-6
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For a CM-field K and an odd prime number p, let (K) over tilde' be a certain multiple Z(p)-extension of K. In this paper, we study several basic properties of the unramified Iwasawa module X-(K) over tilde' of (K) over tilde' as a Z(p)[Gal((K) over tilde'/K)-module. Our first main result is a description of the order of a Galois coinvariant of X-(K) over tilde' in terms of the characteristic power series of the unramified Iwasawa module of the cyclotomic Z(p)-extension of K under a certain assumption on the splitting of primes above p. The second result is that if K is an imaginary quadratic field and if p does not split in K, then, under several assumptions on the Iwasawa lambda-invariant and the ideal class group of K, we determine a necessary and sufficient condition such that X-(K) over tilde is Z(p)[Gal((K) over tilde /K)]-cyclic. Here, (K) over tilde is the Z(p)(2)-extension of K.
引用
收藏
页码:407 / 431
页数:25
相关论文
共 50 条