Spectrum of the Dicke model in a superconducting qubit-oscillator system

被引:5
|
作者
Ashhab, S. [1 ]
Matsuzaki, Y. [2 ,4 ]
Kakuyanagi, K. [2 ]
Saito, S. [2 ]
Yoshihara, F. [3 ]
Fuse, T. [3 ]
Semba, K. [3 ]
机构
[1] Hamad Bin Khalifa Univ, Qatar Fdn, Qatar Environm & Energy Res Inst, Doha, Qatar
[2] NIT Corp, NTT Basic Res Labs, 3-1 Morinosato Wakamiya, Atsugi, Kanagawa 2430198, Japan
[3] Natl Inst Informat & Commun Technol, Adv ICT Inst, 4-2-1 Nukuikitamachi, Koganei, Tokyo 1848795, Japan
[4] Natl Inst Adv Ind Sci & Technol, Elect & Photon Res Inst, Tsukuba, Ibaraki 3058565, Japan
基金
日本科学技术振兴机构;
关键词
PHASE-TRANSITION; FIELD;
D O I
10.1103/PhysRevA.99.063822
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We calculate the transmission spectrum of a superconducting circuit realization of the Dicke model and identify spectroscopic features that can serve as signatures of the superradiant phase. In particular, we calculate the resonance frequencies of the system as functions of the bias term, which is usually absent in studies on the Dicke model but is commonly present in superconducting qubit circuits. To avoid over-complicating the proposed circuit, we assume a fixed coupling strength. This situation precludes the possibility of observing signatures of the phase transition by varying the coupling strength across the critical point. We show that the spectrum obtained by varying the bias point under fixed coupling strength can contain signatures of the normal and superradiant phases: in the normal phase one expects to observe two spectral lines, while in the superradiant phase four spectral lines are expected to exist close to the qubits' symmetry point. Provided that parameter fluctuations and decoherence rates are sufficiently small, the four spectral lines should be observable and can serve as a signature of the superradiant phase.
引用
收藏
页数:11
相关论文
共 50 条
  • [41] Qubit-oscillator dynamics in the dispersive regime: Analytical theory beyond the rotating-wave approximation
    Zueco, David
    Reuther, Georg M.
    Kohler, Sigmund
    Hänggi, Peter
    [J]. Physical Review A - Atomic, Molecular, and Optical Physics, 2009, 80 (03):
  • [42] Qubit-oscillator dynamics in the dispersive regime: Analytical theory beyond the rotating-wave approximation
    Zueco, David
    Reuther, Georg M.
    Kohler, Sigmund
    Haenggi, Peter
    [J]. PHYSICAL REVIEW A, 2009, 80 (03):
  • [43] Spectrum of a superconducting phase qubit coupled to a microscopic two-level system
    Du, Zhican
    Wen, Xueda
    Zhou, Yu
    Sun, Guozhu
    Chen, Jian
    Wu, Peiheng
    [J]. CHINESE SCIENCE BULLETIN, 2014, 59 (29-30): : 3835 - 3840
  • [44] Spectrum of a superconducting phase qubit coupled to a microscopic two-level system
    Zhican Du
    Xueda Wen
    Yu Zhou
    Guozhu Sun
    Jian Chen
    Peiheng Wu
    [J]. Science Bulletin, 2014, (Z2) : 3835 - 3840
  • [45] Spectrum of a superconducting phase qubit coupled to a microscopic two-level system
    Zhican Du
    Xueda Wen
    Yu Zhou
    Guozhu Sun
    Jian Chen
    Peiheng Wu
    [J]. Chinese Science Bulletin., 2014, 59(Z2) (Z2) - 3840
  • [46] Cooperative Breakdown of the Oscillator Blockade in the Dicke Model
    Reiter, Florentin
    Nguyen, Thanh Long
    Home, Jonathan P.
    Yelin, Susanne F.
    [J]. PHYSICAL REVIEW LETTERS, 2020, 125 (23)
  • [47] Selective measurements of superconducting qubit states by a nonlinear Josephson oscillator
    Gergel, V. P.
    Denisenko, M. V.
    Linev, A. V.
    Satanin, A. M.
    [J]. PHYSICS OF THE SOLID STATE, 2016, 58 (11) : 2182 - 2190
  • [48] Superconducting phase qubit based on the Josephson oscillator with strong anharmonicity
    Zorin, A. B.
    Chiarello, F.
    [J]. PHYSICAL REVIEW B, 2009, 80 (21)
  • [49] Selective measurements of superconducting qubit states by a nonlinear Josephson oscillator
    V. P. Gergel’
    M. V. Denisenko
    A. V. Linev
    A. M. Satanin
    [J]. Physics of the Solid State, 2016, 58 : 2182 - 2190
  • [50] Hybrid optomechanical superconducting qubit system
    Manninen, Juuso
    Blick, Robert H.
    Massel, Francesco
    [J]. PHYSICAL REVIEW RESEARCH, 2024, 6 (02):