Spectrum of the Dicke model in a superconducting qubit-oscillator system

被引:5
|
作者
Ashhab, S. [1 ]
Matsuzaki, Y. [2 ,4 ]
Kakuyanagi, K. [2 ]
Saito, S. [2 ]
Yoshihara, F. [3 ]
Fuse, T. [3 ]
Semba, K. [3 ]
机构
[1] Hamad Bin Khalifa Univ, Qatar Fdn, Qatar Environm & Energy Res Inst, Doha, Qatar
[2] NIT Corp, NTT Basic Res Labs, 3-1 Morinosato Wakamiya, Atsugi, Kanagawa 2430198, Japan
[3] Natl Inst Informat & Commun Technol, Adv ICT Inst, 4-2-1 Nukuikitamachi, Koganei, Tokyo 1848795, Japan
[4] Natl Inst Adv Ind Sci & Technol, Elect & Photon Res Inst, Tsukuba, Ibaraki 3058565, Japan
基金
日本科学技术振兴机构;
关键词
PHASE-TRANSITION; FIELD;
D O I
10.1103/PhysRevA.99.063822
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We calculate the transmission spectrum of a superconducting circuit realization of the Dicke model and identify spectroscopic features that can serve as signatures of the superradiant phase. In particular, we calculate the resonance frequencies of the system as functions of the bias term, which is usually absent in studies on the Dicke model but is commonly present in superconducting qubit circuits. To avoid over-complicating the proposed circuit, we assume a fixed coupling strength. This situation precludes the possibility of observing signatures of the phase transition by varying the coupling strength across the critical point. We show that the spectrum obtained by varying the bias point under fixed coupling strength can contain signatures of the normal and superradiant phases: in the normal phase one expects to observe two spectral lines, while in the superradiant phase four spectral lines are expected to exist close to the qubits' symmetry point. Provided that parameter fluctuations and decoherence rates are sufficiently small, the four spectral lines should be observable and can serve as a signature of the superradiant phase.
引用
收藏
页数:11
相关论文
共 50 条
  • [21] Dynamics of Quantum Correlations in a Qubit-Oscillator System Interacting via a Dissipative Bath
    Badveli, R.
    Jagadish, V
    Akshaya, S.
    Srikanth, R.
    Petruccione, F.
    [J]. OPEN SYSTEMS & INFORMATION DYNAMICS, 2020, 27 (01):
  • [22] Controlling qubit-oscillator systems using linear parameter sweeps
    Ashhab, Sahel
    Fuse, Tomoko
    Yoshihara, Fumiki
    Kim, Sunmi
    Semba, Kouichi
    [J]. NEW JOURNAL OF PHYSICS, 2023, 25 (09):
  • [23] Geometric phases in qubit-oscillator system beyond conventional rotating-wave approximation
    Wang Yue-Ming
    Du Guan
    Liang Jiu-Qing
    [J]. CHINESE PHYSICS B, 2012, 21 (04)
  • [24] Geometric phases in qubit-oscillator system beyond conventional rotating-wave approximation
    王月明
    杜冠
    梁九卿
    [J]. Chinese Physics B, 2012, (04) : 323 - 327
  • [25] Ladder of Loschmidt anomalies in the deep strong-coupling regime of a qubit-oscillator system
    Betancourt, J. M.
    Rodriguez, F. J.
    Quiroga, L.
    Johnson, N. F.
    [J]. PHYSICAL REVIEW A, 2021, 104 (04)
  • [26] Deviations from reversible dynamics in a qubit-oscillator system coupled to a very small environment
    Vidiella-Barranco, A.
    [J]. PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2014, 402 : 209 - 215
  • [27] Observation of the Bloch-Siegert Shift in a Qubit-Oscillator System in the Ultrastrong Coupling Regime
    Forn-Diaz, P.
    Lisenfeld, J.
    Marcos, D.
    Garcia-Ripoll, J. J.
    Solano, E.
    Harmans, C. J. P. M.
    Mooij, J. E.
    [J]. PHYSICAL REVIEW LETTERS, 2010, 105 (23)
  • [28] Quantum resources for hybrid communication via qubit-oscillator states
    Tufarelli, Tommaso
    Girolami, Davide
    Vasile, Ruggero
    Bose, Sougato
    Adesso, Gerardo
    [J]. PHYSICAL REVIEW A, 2012, 86 (05):
  • [29] Qubit-Oscillator Concatenated Codes: Decoding Formalism and Code Comparison
    Xu, Yijia
    Wang, Yixu
    Kuo, En-Jui
    Albert, Victor V.
    [J]. PRX QUANTUM, 2023, 4 (02):
  • [30] Squeezed Schrodinger kitten states of a qubit-oscillator system: Generation and quantum properties in the phase space
    Balamurugan, M.
    Chakrabarti, R.
    Jenisha, B. Virgin
    [J]. PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2017, 473 : 428 - 444