Spectrum of the Dicke model in a superconducting qubit-oscillator system

被引:5
|
作者
Ashhab, S. [1 ]
Matsuzaki, Y. [2 ,4 ]
Kakuyanagi, K. [2 ]
Saito, S. [2 ]
Yoshihara, F. [3 ]
Fuse, T. [3 ]
Semba, K. [3 ]
机构
[1] Hamad Bin Khalifa Univ, Qatar Fdn, Qatar Environm & Energy Res Inst, Doha, Qatar
[2] NIT Corp, NTT Basic Res Labs, 3-1 Morinosato Wakamiya, Atsugi, Kanagawa 2430198, Japan
[3] Natl Inst Informat & Commun Technol, Adv ICT Inst, 4-2-1 Nukuikitamachi, Koganei, Tokyo 1848795, Japan
[4] Natl Inst Adv Ind Sci & Technol, Elect & Photon Res Inst, Tsukuba, Ibaraki 3058565, Japan
基金
日本科学技术振兴机构;
关键词
PHASE-TRANSITION; FIELD;
D O I
10.1103/PhysRevA.99.063822
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We calculate the transmission spectrum of a superconducting circuit realization of the Dicke model and identify spectroscopic features that can serve as signatures of the superradiant phase. In particular, we calculate the resonance frequencies of the system as functions of the bias term, which is usually absent in studies on the Dicke model but is commonly present in superconducting qubit circuits. To avoid over-complicating the proposed circuit, we assume a fixed coupling strength. This situation precludes the possibility of observing signatures of the phase transition by varying the coupling strength across the critical point. We show that the spectrum obtained by varying the bias point under fixed coupling strength can contain signatures of the normal and superradiant phases: in the normal phase one expects to observe two spectral lines, while in the superradiant phase four spectral lines are expected to exist close to the qubits' symmetry point. Provided that parameter fluctuations and decoherence rates are sufficiently small, the four spectral lines should be observable and can serve as a signature of the superradiant phase.
引用
收藏
页数:11
相关论文
共 50 条
  • [1] The Spectrum in Qubit-Oscillator Systems in the Ultrastrong Coupling Regime
    Chen Qing-Hu
    Li Lei
    Liu Tao
    Wang Ke-Lin
    [J]. CHINESE PHYSICS LETTERS, 2012, 29 (01)
  • [2] Wigner function description of a qubit-oscillator system
    Allen, James
    Zagoskin, A. M.
    [J]. LOW TEMPERATURE PHYSICS, 2013, 39 (03) : 289 - 293
  • [3] Wigner function description of a qubit-oscillator system
    [J]. Allen, J., 1600, Institute for Low Temperature Physics and Engineering (39):
  • [4] Entanglement dynamics in a dispersively coupled qubit-oscillator system
    Wahyu Utami, D.
    Clerk, A. A.
    [J]. PHYSICAL REVIEW A, 2008, 78 (04):
  • [5] Dynamics of a qubit-oscillator system with periodically varying coupling
    Amico, Mirko
    Kezerashvili, Roman Ya
    [J]. JOURNAL OF PHYSICS B-ATOMIC MOLECULAR AND OPTICAL PHYSICS, 2020, 54 (01)
  • [6] Superconducting qubit-oscillator circuit beyond the ultrastrong-coupling regime
    Yoshihara F.
    Fuse T.
    Ashhab S.
    Kakuyanagi K.
    Saito S.
    Semba K.
    [J]. Nature Physics, 2017, 13 (1) : 44 - 47
  • [7] Coherent dynamics of a qubit-oscillator system in a noisy environment
    Wu, Wei
    Cheng, Jun-Qing
    [J]. QUANTUM INFORMATION PROCESSING, 2018, 17 (11)
  • [8] Superconducting qubit-oscillator circuit beyond the ultrastrong-coupling regime
    Yoshihara, Fumiki
    Fuse, Tomoko
    Ashhab, Sahel
    Kakuyanagi, Kosuke
    Saito, Shiro
    Semba, Kouichi
    [J]. NATURE PHYSICS, 2017, 13 (01) : 44 - 47
  • [9] Non-Markovian effects on the nonlocality of a qubit-oscillator system
    Li, Jie
    McKeown, Gerard
    Semiao, Fernando L.
    Paternostro, Mauro
    [J]. PHYSICAL REVIEW A, 2012, 85 (02)
  • [10] Qubit-oscillator system under ultrastrong coupling and extreme driving
    Hausinger, Johannes
    Grifoni, Milena
    [J]. PHYSICAL REVIEW A, 2011, 83 (03):