Generating Polynomials and Symmetric Tensor Decompositions

被引:41
|
作者
Nie, Jiawang [1 ]
机构
[1] Univ Calif San Diego, Dept Math, 9500 Gilman Dr, La Jolla, CA 92093 USA
基金
美国国家科学基金会;
关键词
Symmetric tensor; Tensor rank; Generating polynomial; Generating matrix; Symmetric tensor decomposition; Polynomial system;
D O I
10.1007/s10208-015-9291-7
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
This paper studies symmetric tensor decompositions. For symmetric tensors, there exist linear relations of recursive patterns among their entries. Such a relation can be represented by a polynomial, which is called a generating polynomial. The homogenization of a generating polynomial belongs to the apolar ideal of the tensor. A symmetric tensor decomposition can be determined by a set of generating polynomials, which can be represented by a matrix. We call it a generating matrix. Generally, a symmetric tensor decomposition can be determined by a generating matrix satisfying certain conditions. We characterize the sets of such generating matrices and investigate their properties (e.g., the existence, dimensions, nondefectiveness). Using these properties, we propose methods for computing symmetric tensor decompositions. Extensive examples are shown to demonstrate the efficiency of proposed methods.
引用
收藏
页码:423 / 465
页数:43
相关论文
共 50 条
  • [31] On decompositions of binary recurrent polynomials
    Kreso, Dijana
    MONATSHEFTE FUR MATHEMATIK, 2022, 199 (01): : 135 - 148
  • [32] Computing tensor product decompositions
    Snow, Dennis M.
    ACM Transactions on Mathematical Software, 1993, 19 (01): : 95 - 108
  • [33] COMPUTING TENSOR PRODUCT DECOMPOSITIONS
    SNOW, DM
    ACM TRANSACTIONS ON MATHEMATICAL SOFTWARE, 1993, 19 (01): : 95 - 108
  • [34] On the optimization landscape of tensor decompositions
    Rong Ge
    Tengyu Ma
    Mathematical Programming, 2022, 193 : 713 - 759
  • [35] Moment tensor decompositions revisited
    Vavrycuk, Vaclav
    JOURNAL OF SEISMOLOGY, 2015, 19 (01) : 231 - 252
  • [36] On the Optimization Landscape of Tensor Decompositions
    Ge, Rong
    Ma, Tengyu
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 30 (NIPS 2017), 2017, 30
  • [37] SPARSE REGULARIZATION OF TENSOR DECOMPOSITIONS
    Kim, Hyon-Jung
    Ollila, Esa
    Koivunen, Visa
    2013 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2013, : 3836 - 3840
  • [38] Reproducibility in Matrix and Tensor Decompositions
    Adali, Tulay
    Kantar, Furkan
    Akhonda, Mohammad Abu Baker Siddique
    Strother, Stephen
    Calhoun, Vince D.
    Acar, Evrim
    IEEE SIGNAL PROCESSING MAGAZINE, 2022, 39 (04) : 8 - 24
  • [39] ORTHOGONAL DECOMPOSITIONS OF TENSOR SPACES
    PIERCE, S
    JOURNAL OF RESEARCH OF THE NATIONAL BUREAU OF STANDARDS SECTION B-MATHEMATICAL SCIENCES, 1970, B 74 (01): : 41 - +
  • [40] HANKEL TENSOR DECOMPOSITIONS AND RANKS
    Nie, Jiawang
    Ye, Ke
    SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 2019, 40 (02) : 486 - 516