Generating Polynomials and Symmetric Tensor Decompositions

被引:41
|
作者
Nie, Jiawang [1 ]
机构
[1] Univ Calif San Diego, Dept Math, 9500 Gilman Dr, La Jolla, CA 92093 USA
基金
美国国家科学基金会;
关键词
Symmetric tensor; Tensor rank; Generating polynomial; Generating matrix; Symmetric tensor decomposition; Polynomial system;
D O I
10.1007/s10208-015-9291-7
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
This paper studies symmetric tensor decompositions. For symmetric tensors, there exist linear relations of recursive patterns among their entries. Such a relation can be represented by a polynomial, which is called a generating polynomial. The homogenization of a generating polynomial belongs to the apolar ideal of the tensor. A symmetric tensor decomposition can be determined by a set of generating polynomials, which can be represented by a matrix. We call it a generating matrix. Generally, a symmetric tensor decomposition can be determined by a generating matrix satisfying certain conditions. We characterize the sets of such generating matrices and investigate their properties (e.g., the existence, dimensions, nondefectiveness). Using these properties, we propose methods for computing symmetric tensor decompositions. Extensive examples are shown to demonstrate the efficiency of proposed methods.
引用
收藏
页码:423 / 465
页数:43
相关论文
共 50 条
  • [21] Decompositions of Grothendieck Polynomials
    Pechenik, Oliver
    Searles, Dominic
    INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2019, 2019 (10) : 3214 - 3241
  • [22] HERMITIAN TENSOR DECOMPOSITIONS
    Nie, Jiawang
    Yang, Zi
    SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 2020, 41 (03) : 1115 - 1144
  • [23] Tensor Decompositions and Their Properties
    Peska, Patrik
    Jukl, Marek
    Mikes, Josef
    MATHEMATICS, 2023, 11 (17)
  • [24] Orthogonal tensor decompositions
    Kolda, TG
    SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 2001, 23 (01) : 243 - 255
  • [25] Tensor Decompositions and Applications
    Kolda, Tamara G.
    Bader, Brett W.
    SIAM REVIEW, 2009, 51 (03) : 455 - 500
  • [26] DECOMPOSITIONS OF TENSOR-PRODUCTS OF SYMMETRIC GROUP-REPRESENTATIONS AND OF SYMMETRIC AND EXTERIOR POWERS OF THE ADJOINT REPRESENTATION OF GL (N)
    DONIN, IF
    DOKLADY AKADEMII NAUK SSSR, 1988, 303 (06): : 1296 - 1301
  • [27] DECOMPOSITIONS OF SYMMETRIC TENSORS
    YORK, JW
    OMURCHAD.N
    BULLETIN OF THE AMERICAN PHYSICAL SOCIETY, 1973, 18 (04): : 645 - 645
  • [28] CHARACTERIZING REAL-VALUED MULTIVARIATE COMPLEX POLYNOMIALS AND THEIR SYMMETRIC TENSOR REPRESENTATIONS
    Jiang, Bo
    Li, Zhening
    Zhang, Shuzhong
    SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 2016, 37 (01) : 381 - 408
  • [29] SYMMETRIC TENSOR RANK, CACTUS RANK AND RELATED COMPLEXITY MEASURES FOR HOMOGENEOUS POLYNOMIALS
    Ballico, E.
    INTERNATIONAL ELECTRONIC JOURNAL OF GEOMETRY, 2014, 7 (01): : 126 - 132
  • [30] On decompositions of binary recurrent polynomials
    Dijana Kreso
    Monatshefte für Mathematik, 2022, 199 : 135 - 148