Discrepancy in generalized arithmetic progressions

被引:1
|
作者
Cilleruelo, Javier [1 ,2 ]
Hebbinghaus, Nils [3 ]
机构
[1] Univ Autonoma Madrid, Inst Ciencias Matemat, CSIC UAM UC3M UCM, E-28049 Madrid, Spain
[2] Univ Autonoma Madrid, Dept Matemat, E-28049 Madrid, Spain
[3] Max Planck Inst Informat, Saarbrucken, Germany
关键词
ART; NO; R5;
D O I
10.1016/j.ejc.2009.03.006
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Estimating the discrepancy of the set of all arithmetic progressions in the first N natural numbers was one of the famous open problems in combinatorial discrepancy theory for a long time, Successfully solved by K. Roth (lower bound) and Beck (upper bound). They proved that D(N) = min(X) max(A) vertical bar Sigma(x is an element of A) chi (x)vertical bar = Theta(N-1/4). where the minimum is taken over all colorings chi : [N] -> {-1, 1} and the maximum over all arithmetic progressions in [N] {0,..., N - 1}. Sumsets of k arithmetic progressions, A(1) + ... + A(k), are called k-arithmetic progressions and they are important objects in additive combinatorics. We define D-k(N) as the discrepancy of the set {P boolean AND [N] : P is a k-arithmetic progression}. The second author proved that D-k(N) = Omega(Nk/(2k+2)) and Privetivy improved it to Omega(N-1/2) for all k >= 3. Since the probabilistic argument gives D-k (N) = O((N log N)(1/2)) for all fixed k, the case k = 2 remained the only case with a large gap between the known Upper and lower bounds. We bridge this gap (up to a logarithmic factor) by proving that D-k(N) = Omega(N-1/2) for all k >= 2. Indeed we prove the multicolor version of this result. (C) 2009 Elsevier Ltd. All rights reserved.
引用
收藏
页码:1607 / 1611
页数:5
相关论文
共 50 条
  • [41] PRIMES IN ARITHMETIC PROGRESSIONS
    MONTGOMERY, HL
    [J]. MICHIGAN MATHEMATICAL JOURNAL, 1970, 17 (01) : 33 - +
  • [42] SUMS OF ARITHMETIC PROGRESSIONS
    COOK, R
    SHARPE, D
    [J]. FIBONACCI QUARTERLY, 1995, 33 (03): : 218 - 221
  • [43] On rainbow arithmetic progressions
    Axenovich, M
    Fon-Der-Flaass, D
    [J]. ELECTRONIC JOURNAL OF COMBINATORICS, 2004, 11 (01):
  • [44] ARITHMETIC PROGRESSIONS IN SEQUENCES
    CHOI, SLG
    [J]. JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 1975, 10 (AUG): : 427 - 430
  • [45] PRIMES IN ARITHMETIC PROGRESSIONS
    MOTOHASHI, Y
    [J]. INVENTIONES MATHEMATICAE, 1978, 44 (02) : 163 - 178
  • [46] Arithmetic progressions and the primes
    Tao, Terence
    [J]. COLLECTANEA MATHEMATICA, 2006, : 37 - 88
  • [47] On disjoint arithmetic progressions
    Chen, YG
    [J]. ACTA ARITHMETICA, 2005, 118 (02) : 143 - 148
  • [48] Primes in arithmetic progressions
    Ramare, O
    Rumely, R
    [J]. MATHEMATICS OF COMPUTATION, 1996, 65 (213) : 397 - 425
  • [49] ARITHMETIC PROGRESSIONS IN SUMSETS
    RUZSA, IZ
    [J]. ACTA ARITHMETICA, 1991, 60 (02) : 191 - 202
  • [50] Rainbow arithmetic progressions
    Butler, Steve
    Erickson, Craig
    Hogben, Leslie
    Hogenson, Kirsten
    Kramer, Lucas
    Kramer, Richard L.
    Lin, Jephian Chin-Hung
    Martin, Ryan R.
    Stolee, Derrick
    Warnberg, Nathan
    Young, Michael
    [J]. JOURNAL OF COMBINATORICS, 2016, 7 (04) : 595 - 626