Semi-Supervised and Unsupervised Extreme Learning Machines

被引:628
|
作者
Huang, Gao [1 ]
Song, Shiji [1 ]
Gupta, Jatinder N. D. [2 ]
Wu, Cheng [1 ]
机构
[1] Tsinghua Univ, Dept Automat, Beijing 100084, Peoples R China
[2] Univ Alabama, Coll Business Adm, Huntsville, AL 35899 USA
基金
中国国家自然科学基金;
关键词
Clustering; embedding; extreme learning machine (ELM); manifold regularization; semi-supervised learning; unsupervised learning; LEAST-SQUARES ALGORITHM; SUPPORT VECTOR MACHINES; FEEDFORWARD NETWORKS; REGRESSION; APPROXIMATION;
D O I
10.1109/TCYB.2014.2307349
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Extreme learning machines (ELMs) have proven to be efficient and effective learning mechanisms for pattern classification and regression. However, ELMs are primarily applied to supervised learning problems. Only a few existing research papers have used ELMs to explore unlabeled data. In this paper, we extend ELMs for both semi-supervised and unsupervised tasks based on the manifold regularization, thus greatly expanding the applicability of ELMs. The key advantages of the proposed algorithms are as follows: 1) both the semi-supervised ELM (SS-ELM) and the unsupervised ELM (US-ELM) exhibit learning capability and computational efficiency of ELMs; 2) both algorithms naturally handle multiclass classification or multi-cluster clustering; and 3) both algorithms are inductive and can handle unseen data at test time directly. Moreover, it is shown in this paper that all the supervised, semi-supervised, and unsupervised ELMs can actually be put into a unified framework. This provides new perspectives for understanding the mechanism of random feature mapping, which is the key concept in ELM theory. Empirical study on a wide range of data sets demonstrates that the proposed algorithms are competitive with the state-of-the-art semi-supervised or unsupervised learning algorithms in terms of accuracy and efficiency.
引用
收藏
页码:2405 / 2417
页数:13
相关论文
共 50 条
  • [31] Fisher-regularized supervised and semi-supervised extreme learning machine
    Jun Ma
    Yakun Wen
    Liming Yang
    Knowledge and Information Systems, 2020, 62 : 3995 - 4027
  • [32] Unsupervised Selective Labeling for More Effective Semi-supervised Learning
    Wang, Xudong
    Lian, Long
    Yu, Stella X.
    COMPUTER VISION - ECCV 2022, PT XXX, 2022, 13690 : 427 - 445
  • [33] Rank Flow Embedding for Unsupervised and Semi-Supervised Manifold Learning
    Valem, Lucas Pascotti
    Pedronette, Daniel Carlos Guimaraes
    Latecki, Longin Jan
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2023, 32 : 2811 - 2826
  • [34] Deep Learning Based Unsupervised and Semi-supervised Classification for Keratoconus
    Hallett, Nicole
    Yi, Kai
    Dick, Josef
    Hodge, Christopher
    Sutton, Gerard
    Wang, Yu Guang
    You, Jingjing
    2020 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2020,
  • [35] Multilingual Metaphor Processing: Experiments with Semi-Supervised and Unsupervised Learning
    Shutova, Ekaterina
    Sun, Lin
    Gutierrez, Elkin Dario
    Lichtenstein, Patricia
    Narayanan, Srini
    COMPUTATIONAL LINGUISTICS, 2017, 43 (01) : 71 - 123
  • [36] Graph-based methods for unsupervised and semi-supervised learning
    Saul, LK
    2005 IEEE WORKSHOP ON AUTOMATIC SPEECH RECOGNITION AND UNDERSTANDING (ASRU), 2005, : 3 - 3
  • [37] SEMI-SUPERVISED AND UNSUPERVISED NOVELTY DETECTION USING NESTED SUPPORT VECTOR MACHINES
    de Morsier, Frank
    Borgeaud, Maurice
    Kuechler, Christoph
    Gass, Volker
    Thiran, Jean-Philippe
    2012 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2012, : 7337 - 7340
  • [38] Ternary reversible extreme learning machines: the incremental tri-training method for semi-supervised classification
    Xiao-Liang Tang
    Min Han
    Knowledge and Information Systems, 2010, 23 : 345 - 372
  • [39] Ternary reversible extreme learning machines: the incremental tri-training method for semi-supervised classification
    Tang, Xiao-Liang
    Han, Min
    KNOWLEDGE AND INFORMATION SYSTEMS, 2010, 23 (03) : 345 - 372
  • [40] Nonlinear industrial soft sensor development based on semi-supervised probabilistic mixture of extreme learning machines
    Shao, Weiming
    Ge, Zhiqiang
    Song, Zhihuan
    Wang, Kai
    CONTROL ENGINEERING PRACTICE, 2019, 91