Deep Learning Based Unsupervised and Semi-supervised Classification for Keratoconus

被引:11
|
作者
Hallett, Nicole [1 ]
Yi, Kai [2 ]
Dick, Josef [2 ]
Hodge, Christopher [1 ]
Sutton, Gerard [1 ]
Wang, Yu Guang [2 ]
You, Jingjing [1 ]
机构
[1] Univ Sydney, Sydney Eye Hosp, Sydney, NSW, Australia
[2] Univ New South Wales, Sch Math & Stat, Sydney, NSW, Australia
基金
澳大利亚研究理事会;
关键词
Variational Autoencoder; Multilayer Perceptron; Cornea; Keratoconus; Bayesian Neural Networks; Clustering; Deep Learning; Semi-supervised Learning; Dimensionality Reduction; Diagnosis; Amsler-Krumeich Classification; EYES;
D O I
10.1109/ijcnn48605.2020.9206694
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The transparent cornea is the window of the eye, facilitating the entry of light rays and controlling focusing the movement of the light within the eye. The cornea is critical, contributing to 75% of the refractive power of the eye. Keratoconus is a progressive and multifactorial corneal degenerative disease affecting 1 in 2000 individuals worldwide. Currently, there is no cure for keratoconus other than corneal transplantation for advanced stage keratoconus or corneal cross-linking, which can only halt KC progression. The ability to accurately identify subtle KC or KC progression is of vital clinical significance. To date, there has been little consensus on a useful model to classify KC patients, which therefore inhibits the ability to predict disease progression accurately. In this paper, we utilised machine learning to analyse data from 124 KC patients, including topographical and clinical variables. Both supervised multilayer perceptron and unsupervised variational autoencoder models were used to classify KC patients with reference to the existing Amsler-Krumeich (A-K) classification system. Both methods result in high accuracy, with the unsupervised method showing better performance. The result showed that the unsupervised method with a selection of 29 variables could be a powerful tool to provide an automatic classification tool for clinicians. These outcomes provide a platform for additional analysis for the progression and treatment of keratoconus.
引用
收藏
页数:7
相关论文
共 50 条
  • [1] COMBINED UNSUPERVISED AND SEMI-SUPERVISED LEARNING FOR DATA CLASSIFICATION
    Breve, Fabricio Aparecido
    Guimaraes Pedronette, Daniel Carlos
    2016 IEEE 26TH INTERNATIONAL WORKSHOP ON MACHINE LEARNING FOR SIGNAL PROCESSING (MLSP), 2016,
  • [2] Semi-Supervised and Unsupervised Deep Visual Learning: A Survey
    Chen, Yanbei
    Mancini, Massimiliano
    Zhu, Xiatian
    Akata, Zeynep
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2024, 46 (03) : 1327 - 1347
  • [3] Deep graph learning for semi-supervised classification
    Lin, Guangfeng
    Kang, Xiaobing
    Liao, Kaiyang
    Zhao, Fan
    Chen, Yajun
    PATTERN RECOGNITION, 2021, 118
  • [4] Unsupervised remote sensing image scene classification based on semi-supervised learning
    Bai, Kun
    Mu, Xiaodong
    Chen, Xuebing
    Zhu, Yongqing
    You, Xuanang
    Cehui Xuebao/Acta Geodaetica et Cartographica Sinica, 2022, 51 (05): : 691 - 702
  • [5] FeO Content Classification of Sinter Based on Semi-Supervised Deep Learning
    Ding, Qian
    Li, Zongping
    Zhao, Liming
    PROCEEDINGS OF THE 33RD CHINESE CONTROL AND DECISION CONFERENCE (CCDC 2021), 2021, : 640 - 644
  • [6] SEMI-SUPERVISED DEEP LEARNING FOR OBJECT TRACKING AND CLASSIFICATION
    Doulamis, Nikolaos
    Doulamis, Anastasios
    2014 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2014, : 848 - 852
  • [7] Deep semi-supervised learning for brain tumor classification
    Chenjie Ge
    Irene Yu-Hua Gu
    Asgeir Store Jakola
    Jie Yang
    BMC Medical Imaging, 20
  • [8] Semi-supervised deep learning for hyperspectral image classification
    Kang, Xudong
    Zhuo, Binbin
    Duan, Puhong
    REMOTE SENSING LETTERS, 2019, 10 (04) : 353 - 362
  • [9] Deep semi-supervised learning for brain tumor classification
    Ge, Chenjie
    Gu, Irene Yu-Hua
    Jakola, Asgeir Store
    Yang, Jie
    BMC MEDICAL IMAGING, 2020, 20 (01)
  • [10] Deep Semi-supervised Learning for Time Series Classification
    Goschenhofer, Jann
    Hvingelby, Rasmus
    Ruegamer, David
    Thomas, Janek
    Wagner, Moritz
    Bischl, Bernd
    20TH IEEE INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND APPLICATIONS (ICMLA 2021), 2021, : 422 - 428