Toeplitz operators on Hardy-Sobolev spaces

被引:3
|
作者
Cao, Guangfu [1 ]
He, Li [2 ]
机构
[1] South China Agr Univ, Dept Math, Guangzhou 510640, Guangdong, Peoples R China
[2] Guangzhou Univ, Sch Math & Informat Sci, Guangzhou 510006, Guangdong, Peoples R China
关键词
Hardy-Sobolev space; Toeplitz operator; Fredholm operator; Trace class operator; Toeplitz algebra; FREDHOLM PROPERTIES; PRODUCTS; SYMBOLS;
D O I
10.1016/j.jmaa.2019.07.048
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we construct compact Toeplitz operators and trace class Toeplitz operators with unbounded symbols on Hardy-Sobolev spaces. We also characterize the compactness of finite sums of products of two Toeplitz operators on these spaces. Then, we study the Fredholmness of the Toeplitz operators and calculate the essential norm of them. In addition, we consider the C*-algebra generated by Toeplitz operators. (C) 2019 Elsevier Inc. All rights reserved.
引用
收藏
页码:2165 / 2195
页数:31
相关论文
共 50 条
  • [31] Fractional Hardy-Sobolev inequalities on half spaces
    Musina, Roberta
    Nazarov, Alexander I.
    [J]. NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2019, 178 : 32 - 40
  • [32] Holomorphic potentials and multipliers for Hardy-Sobolev spaces
    Cascante, C.
    Fabrega, J.
    Ortega, J. M.
    [J]. MONATSHEFTE FUR MATHEMATIK, 2015, 177 (02): : 185 - 201
  • [33] Hardy-Sobolev Spaces Decomposition in Signal Analysis
    Dang, Pei
    Qian, Tao
    You, Zhong
    [J]. JOURNAL OF FOURIER ANALYSIS AND APPLICATIONS, 2011, 17 (01) : 36 - 64
  • [34] WEAK TRACE MEASURES ON HARDY-SOBOLEV SPACES
    Cascante, Carme
    Ortega, Joaquin M.
    [J]. MATHEMATICAL RESEARCH LETTERS, 2013, 20 (02) : 235 - 254
  • [35] Interpolation along manifolds in Hardy-Sobolev spaces
    [J]. Journal of Geometric Analysis, 7 (01): : 17 - 45
  • [36] Maximal characterization of Hardy-Sobolev spaces on manifolds
    Badr, N.
    Dafni, G.
    [J]. CONCENTRATION, FUNCTIONAL INEQUALITIES AND ISOPERIMETRY, 2011, 545 : 13 - +
  • [37] On optimal recovery methods in Hardy-Sobolev spaces
    Osipenko, KY
    [J]. SBORNIK MATHEMATICS, 2001, 192 (1-2) : 225 - 244
  • [38] Hardy-Sobolev Spaces Associated with Twisted Convolution
    Huang, Jizheng
    Li, Weiwei
    Wang, Yaqiong
    [J]. JOURNAL OF FUNCTION SPACES, 2017, 2017
  • [39] Carleson measures on spaces of Hardy-Sobolev type
    Cascante, C
    Ortega, JM
    [J]. CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 1995, 47 (06): : 1177 - 1200
  • [40] Hardy-Sobolev Spaces Decomposition in Signal Analysis
    Pei Dang
    Tao Qian
    Zhong You
    [J]. Journal of Fourier Analysis and Applications, 2011, 17 : 36 - 64