Nonparametric estimation of quadratic regression functionals

被引:16
|
作者
Huang, LS [1 ]
Fan, JQ
机构
[1] Florida State Univ, Dept Stat, Tallahassee, FL 32306 USA
[2] Univ N Carolina, Dept Stat, Chapel Hill, NC 27599 USA
关键词
asymptotic normality; equivalent kernel; local polynomial regression;
D O I
10.2307/3318450
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Quadratic regression functionals are important for bandwidth selection of nonparametric regression techniques and for nonparametric goodness-of-fit tests. Based on local polynomial regression, we propose estimators for weighted integrals of squared derivatives of regression functions. The rates of convergence in mean square error are calculated under various degrees of smoothness and appropriate values of the smoothing parameter. Asymptotic distributions of the proposed quadratic estimators are considered with the Gaussian noise assumption. It is shown that when the estimators are pseudo-quadratic (linear components dominate quadratic components), asymptotic normality with rate n(-1/2) can be achieved.
引用
收藏
页码:927 / 949
页数:23
相关论文
共 50 条
  • [1] Nonparametric estimation for quadratic regression
    Chatterjee, Samprit
    Olkin, Ingram
    [J]. STATISTICS & PROBABILITY LETTERS, 2006, 76 (11) : 1156 - 1163
  • [2] ADAPTIVE ESTIMATION OF FUNCTIONALS IN NONPARAMETRIC INSTRUMENTAL REGRESSION
    Breunig, Christoph
    Johannes, Jan
    [J]. ECONOMETRIC THEORY, 2016, 32 (03) : 612 - 654
  • [3] Nonparametric estimation of global functionals and a measure of the explanatory power of covariates in regression
    Doksum, K
    Samarov, A
    [J]. ANNALS OF STATISTICS, 1995, 23 (05): : 1443 - 1473
  • [4] ON THE ESTIMATION OF QUADRATIC FUNCTIONALS
    FAN, JQ
    [J]. ANNALS OF STATISTICS, 1991, 19 (03): : 1273 - 1294
  • [5] Adaptive estimation of nonparametric functionals
    Liu, Lin
    Mukherjee, Rajarshi
    Robins, James M.
    Tchetgen, Eric Tchetgen
    [J]. Journal of Machine Learning Research, 2021, 22
  • [6] Adaptive Estimation of Nonparametric Functionals
    Liu, Lin
    Mukherjee, Rajarshi
    Robins, James M.
    Tchetgen, Eric Tchetgen
    [J]. JOURNAL OF MACHINE LEARNING RESEARCH, 2021, 22
  • [7] On nonparametric estimation of mean functionals
    Galindo, CD
    [J]. STATISTICS & PROBABILITY LETTERS, 1998, 39 (02) : 143 - 149
  • [8] Estimation of location and scale functionals in nonparametric regression under copula dependent censoring
    Sujica, Aleksandar
    Van Keilegom, Ingrid
    [J]. CANADIAN JOURNAL OF STATISTICS-REVUE CANADIENNE DE STATISTIQUE, 2015, 43 (02): : 306 - 335
  • [9] MINIMAX ESTIMATION OF LINEAR FUNCTIONALS, PARTICULARLY IN NONPARAMETRIC REGRESSION AND POSITRON EMISSION TOMOGRAPHY
    STANDER, J
    SILVERMAN, BW
    [J]. COMPUTATIONAL STATISTICS, 1995, 10 (03) : 259 - 283
  • [10] Estimation of quadratic functionals of a density
    Martinez, HV
    Olivares, MM
    [J]. STATISTICS & PROBABILITY LETTERS, 1999, 42 (04) : 327 - 332