Nonparametric estimation of global functionals and a measure of the explanatory power of covariates in regression

被引:97
|
作者
Doksum, K [1 ]
Samarov, A [1 ]
机构
[1] MIT,ALFRED P SLOAN SCH MANAGEMENT,CAMBRIDGE,MA 02139
来源
ANNALS OF STATISTICS | 1995年 / 23卷 / 05期
关键词
nonparametric R-squared; Pearson's correlation ratio; integral regression functionals; measure of subset importance; index of nonlinearity; bandwidth selection; cross-validation;
D O I
10.1214/aos/1176324307
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In a nonparametric regression setting with multiple random predictor variables, we give the asymptotic distributions of estimators of global integral functionals of the regression surface. We apply the results to the problem of obtaining reliable estimators for the nonparametric coefficient of determination. This coefficient, which is also called Pearson's correlation ratio, gives the fraction of the total variability of a response that can be explained by a given set of covariates. It can be used to construct measures of nonlinearity of regression and relative importance of subsets of regressors, and to assess the validity of other model restrictions. In addition to providing asymptotic results, we propose several data-based bandwidth selection rules and carry out a Monte Carlo simulation study of finite sample properties of these rules and associated estimators of explanatory power. We also provide two real data examples.
引用
收藏
页码:1443 / 1473
页数:31
相关论文
共 50 条
  • [1] An integral estimator of residual variance and a measure of explanatory power of covariates in nonparametric regression
    Lavergne, P
    Vuong, QH
    [J]. JOURNAL OF NONPARAMETRIC STATISTICS, 1998, 9 (04) : 363 - 380
  • [2] Nonparametric estimation of quadratic regression functionals
    Huang, LS
    Fan, JQ
    [J]. BERNOULLI, 1999, 5 (05) : 927 - 949
  • [3] ADAPTIVE ESTIMATION OF FUNCTIONALS IN NONPARAMETRIC INSTRUMENTAL REGRESSION
    Breunig, Christoph
    Johannes, Jan
    [J]. ECONOMETRIC THEORY, 2016, 32 (03) : 612 - 654
  • [4] NONPARAMETRIC REGRESSION WITH CENSORED COVARIATES
    DABROWSKA, DM
    [J]. JOURNAL OF MULTIVARIATE ANALYSIS, 1995, 54 (02) : 253 - 283
  • [5] A significance test for covariates in nonparametric regression
    Lavergne, Pascal
    Maistre, Samuel
    Patilea, Valentin
    [J]. ELECTRONIC JOURNAL OF STATISTICS, 2015, 9 (01): : 643 - 678
  • [6] Nonparametric regression with selectively missing covariates
    Breunig, Christoph
    Haan, Peter
    [J]. JOURNAL OF ECONOMETRICS, 2021, 223 (01) : 28 - 52
  • [7] NONPARAMETRIC REGRESSION WITH NONPARAMETRICALLY GENERATED COVARIATES
    Mammen, Enno
    Rothe, Christoph
    Schienle, Melanie
    [J]. ANNALS OF STATISTICS, 2012, 40 (02): : 1132 - 1170
  • [8] Nonparametric multivariate L1-median regression estimation with functional covariates
    Chaouch, Mohamed
    Laib, Naamane
    [J]. ELECTRONIC JOURNAL OF STATISTICS, 2013, 7 : 1553 - 1586
  • [9] Nonparametric estimation of regression parameters from censored data with two discrete covariates
    Rahbar, MH
    [J]. LIFETIME DATA: MODELS IN RELIABILITY AND SURVIVAL ANALYSIS, 1996, : 257 - 262
  • [10] Adaptive estimation of nonparametric functionals
    Liu, Lin
    Mukherjee, Rajarshi
    Robins, James M.
    Tchetgen, Eric Tchetgen
    [J]. Journal of Machine Learning Research, 2021, 22