Nonparametric estimation of quadratic regression functionals

被引:16
|
作者
Huang, LS [1 ]
Fan, JQ
机构
[1] Florida State Univ, Dept Stat, Tallahassee, FL 32306 USA
[2] Univ N Carolina, Dept Stat, Chapel Hill, NC 27599 USA
关键词
asymptotic normality; equivalent kernel; local polynomial regression;
D O I
10.2307/3318450
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Quadratic regression functionals are important for bandwidth selection of nonparametric regression techniques and for nonparametric goodness-of-fit tests. Based on local polynomial regression, we propose estimators for weighted integrals of squared derivatives of regression functions. The rates of convergence in mean square error are calculated under various degrees of smoothness and appropriate values of the smoothing parameter. Asymptotic distributions of the proposed quadratic estimators are considered with the Gaussian noise assumption. It is shown that when the estimators are pseudo-quadratic (linear components dominate quadratic components), asymptotic normality with rate n(-1/2) can be achieved.
引用
收藏
页码:927 / 949
页数:23
相关论文
共 50 条