Ten-percent solar-to-fuel conversion with nonprecious materials

被引:275
|
作者
Cox, Casandra R. [1 ]
Lee, Jungwoo Z. [2 ]
Nocera, Daniel G. [1 ]
Buonassisi, Tonio [2 ]
机构
[1] Harvard Univ, Dept Chem & Chem Biol, Cambridge, MA 02138 USA
[2] MIT, Dept Mech Engn, Cambridge, MA 02139 USA
基金
美国国家科学基金会; 新加坡国家研究基金会;
关键词
solar cell; earth abundant; renewable; artificial leaf; multijunction; OXYGEN-EVOLVING CATALYST; WATER OXIDATION; HYDROGEN-PRODUCTION; THIN-FILM; IN-SITU; SEMICONDUCTING PHOTOELECTRODES; EVOLUTION CATALYST; SPLITTING WATER; DESIGN CRITERIA; EFFICIENCY;
D O I
10.1073/pnas.1414290111
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Direct solar-to-fuels conversion can be achieved by coupling a photovoltaic device with water-splitting catalysts. We demonstrate that a solar-to-fuels efficiency (SFE) > 10% can be achieved with nonprecious, low-cost, and commercially ready materials. We present a systems design of a modular photovoltaic (PV)-electrochemical device comprising a crystalline silicon PV minimodule and low-cost hydrogen-evolution reaction and oxygen-evolution reaction catalysts, without power electronics. This approach allows for facile optimization en route to addressing lower-cost devices relying on crystalline silicon at high SFEs for direct solar-to-fuels conversion.
引用
收藏
页码:14057 / 14061
页数:5
相关论文
共 50 条
  • [41] Presents strategies for improving the performance of solar-to-fuel conversion by photocatalytic systems (vol 31, pg ch 15, 2020)
    Cao, Shaowen
    Yu, Jiaguo
    JOURNAL OF COLLOID AND INTERFACE SCIENCE, 2021, 585 : 820 - 820
  • [42] Design and construction of nanostructured photocatalytic materials for solar fuel conversion
    Ye, Jinhua
    Tong, Hua
    Liu, Lequn
    Ouyang, Shuxin
    Umezawa, Naoto
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2014, 247
  • [43] Bias-free photoelectrochemical H2O2 production with a solar-to-fuel conversion efficiency of 2.33%
    Zhu, Dan
    Feng, Chao
    Fan, Zeyu
    Zhang, Beibei
    Luo, Xin
    Li, Yanbo
    SUSTAINABLE ENERGY & FUELS, 2023, 7 (14) : 3326 - 3332
  • [44] Estimation of solar-to-fuel energy conversion efficiency of a solar driven samarium oxide-based thermochemical CO2 splitting cycle
    Bhosale, Rahul R.
    GREENHOUSE GASES-SCIENCE AND TECHNOLOGY, 2020, 10 (04) : 725 - 735
  • [45] Modeling Thermochemical Solar-to-Fuel Conversion: CALPHAD for Thermodynamic Assessment Studies of Perovskites, Exemplified for (La, Sr)MnO3
    Bork, Alexander H.
    Povoden-Karadeniz, Erwin
    Rupp, Jennifer L. M.
    ADVANCED ENERGY MATERIALS, 2017, 7 (01)
  • [46] Nonprecious metal catalysts for fuel cells, electrolyzers, and solar hydrogen devices
    Yan, Yushan
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2013, 246
  • [47] Molecular-Modified Photocathodes for Applications in Artificial Photosynthesis and Solar-to-Fuel Technologies
    Cruz, Edgar A. Reyes
    Nishiori, Daiki
    Wadsworth, Brian L.
    Nguyen, Nghi P.
    Hensleigh, Lillian K.
    Khusnutdinova, Diana
    Beiler, Anna M.
    Moore, G. F.
    CHEMICAL REVIEWS, 2022, 122 (21) : 16051 - 16109
  • [48] Advances of photothermal chemistry in photocatalysis, thermocatalysis, and synergetic photothermocatalysis for solar-to-fuel generation
    Gao, Minmin
    Zhang, Tianxi
    Ho, Ghim Wei
    NANO RESEARCH, 2022, 15 (12) : 9985 - 10005
  • [49] Structure and function of photosystem I and its application in biomimetic solar-to-fuel systems
    Kargul, Joanna
    Olmos, Julian David Janna
    Krupnik, Tomasz
    JOURNAL OF PLANT PHYSIOLOGY, 2012, 169 (16) : 1639 - 1653
  • [50] Advances of photothermal chemistry in photocatalysis, thermocatalysis, and synergetic photothermocatalysis for solar-to-fuel generation
    Minmin Gao
    Tianxi Zhang
    Ghim Wei Ho
    Nano Research, 2022, 15 : 9985 - 10005