Ten-percent solar-to-fuel conversion with nonprecious materials

被引:275
|
作者
Cox, Casandra R. [1 ]
Lee, Jungwoo Z. [2 ]
Nocera, Daniel G. [1 ]
Buonassisi, Tonio [2 ]
机构
[1] Harvard Univ, Dept Chem & Chem Biol, Cambridge, MA 02138 USA
[2] MIT, Dept Mech Engn, Cambridge, MA 02139 USA
基金
美国国家科学基金会; 新加坡国家研究基金会;
关键词
solar cell; earth abundant; renewable; artificial leaf; multijunction; OXYGEN-EVOLVING CATALYST; WATER OXIDATION; HYDROGEN-PRODUCTION; THIN-FILM; IN-SITU; SEMICONDUCTING PHOTOELECTRODES; EVOLUTION CATALYST; SPLITTING WATER; DESIGN CRITERIA; EFFICIENCY;
D O I
10.1073/pnas.1414290111
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Direct solar-to-fuels conversion can be achieved by coupling a photovoltaic device with water-splitting catalysts. We demonstrate that a solar-to-fuels efficiency (SFE) > 10% can be achieved with nonprecious, low-cost, and commercially ready materials. We present a systems design of a modular photovoltaic (PV)-electrochemical device comprising a crystalline silicon PV minimodule and low-cost hydrogen-evolution reaction and oxygen-evolution reaction catalysts, without power electronics. This approach allows for facile optimization en route to addressing lower-cost devices relying on crystalline silicon at high SFEs for direct solar-to-fuels conversion.
引用
收藏
页码:14057 / 14061
页数:5
相关论文
共 50 条
  • [31] Expanding the capabilities of the Ten-Percent Rule for predicting the strength of fibre-polymer composites
    Hart-Smith, LJ
    COMPOSITES SCIENCE AND TECHNOLOGY, 2002, 62 (12-13) : 1515 - 1544
  • [32] Multicomponent quantum confined semiconductor nanorods: From charge separation dynamics to solar-to-fuel conversion
    Lian, Tianquan
    Zhu, Haiming
    Wu, Kaifeng
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2013, 246
  • [33] Advancing Energy Sustainability Through Solar-to-Fuel Technologies: From Materials to Devices and Systems
    Li, Xintong
    Yu, Zexin
    Zhang, Chunlei
    Li, Bo
    Wu, Xin
    Liu, Yizhe
    Zhu, Zonglong
    SMALL METHODS, 2024, 8 (11):
  • [34] Thermodynamic study of the effect of partial thermal reduction of dysprosium oxide on solar-to-fuel energy conversion efficiency
    Bhosale, Rahul R.
    FUEL, 2020, 278
  • [35] Nature-Inspired Design of Artificial Solar-to-Fuel Conversion Systems based on Copper Phosphate Microflowers
    Wang, Jing
    Zhu, Ting
    Ho, Ghim Wei
    CHEMSUSCHEM, 2016, 9 (13) : 1575 - 1578
  • [36] Organic-inorganic hybrid-based S-scheme heterostructure in solar-to-fuel conversion
    Liu, Yongkang
    Chen, Chunguang
    Dawson, Graham
    Zhang, Jinfeng
    Shao, Chunfeng
    Dai, Kai
    JOURNAL OF MATERIALS SCIENCE & TECHNOLOGY, 2025, 233 : 10 - 37
  • [37] Advancing solar energy conversion materials: fuel the future
    Zhigang Zou
    National Science Review, 2021, 8 (08) : 6 - 6
  • [38] Advancing solar energy conversion materials: fuel the future
    Zou, Zhigang
    NATIONAL SCIENCE REVIEW, 2021, 8 (08)
  • [39] Artificial photosynthesis and bio-inspired solar-to-fuel strategies
    Moore, Thomas A.
    Gust, Devens
    Moore, Ana L.
    Mallouk, Thomas E.
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2013, 246
  • [40] Standalone anion- and co-doped titanium dioxide nanotubes for photocatalytic and photoelectrochemical solar-to-fuel conversion
    Ding, Yuchen
    Nagpal, Prashant
    NANOSCALE, 2016, 8 (40) : 17496 - 17505