Improving Soil Moisture Data Retrieval From Airborne L-Band Radiometer Data by Considering Spatially Varying Roughness

被引:9
|
作者
Pause, Marion [1 ]
Lausch, Angela [2 ]
Bernhardt, Matthias [3 ]
Hacker, Jorg [4 ]
Schulz, Karsten [5 ]
机构
[1] Univ Tubingen, Water & Earth Syst Sci Competence Cluster WESS, D-72074 Tubingen, Germany
[2] UFZ Helmholtz Ctr Environm Res, Dept Computat Landscape Ecol, D-04318 Leipzig, Germany
[3] Univ Munich, Dept Geog, D-80333 Munich, Germany
[4] Airborne Res Australia, Salisbury South, SA 5106, Australia
[5] Univ Nat Resources & Life Sci, Inst Water Management Hydrol & Hydraul Engn, A-1190 Vienna, Austria
关键词
VEGETATION OPTICAL DEPTH; MICROWAVE EMISSION; SURFACE-ROUGHNESS; MODEL; PARAMETERIZATION; POLARIZATION; METHODOLOGY;
D O I
10.1080/07038992.2014.907522
中图分类号
TP7 [遥感技术];
学科分类号
081102 ; 0816 ; 081602 ; 083002 ; 1404 ;
摘要
This study presents the retrieval of near-surface soil moisture data below crop canopies (winter rye and winter barley) from airborne L-band radiometer observations using a radiative transfer model at very dry soil moisture conditions (<15 Vol.%). Using physically based models, the roughness parameterization plays a crucial role for the description of the surface emissivity. A two-step optimization procedure was performed for choosing an optimal roughness value to minimize the uncertainty of soil moisture estimates. A crop-type specific roughness parameterization within the model did not show satisfactory soil moisture results. Instead, a "pixel"-based (spatially varying) roughness parameter optimization provided significantly improved results, also indicating a strong relationship between the optimal roughness parameter value and the Normalized Difference Vegetation Index (NDVI) derived from imaging spectrometer data. Our results demonstrate the importance of treating surface roughness as spatially variable when retrieving soil moisture information from high spatial resolution L-band brightness temperature data. Furthermore, the results strongly indicate that a combination of passive microwave observations and optical remote sensing data of the vegetation improve the mapping and monitoring of surface soil moisture.
引用
收藏
页码:15 / 25
页数:11
相关论文
共 50 条
  • [41] Soil moisture retrieval using L-band time-series SAR data from the SMAPVEX12 experiment
    Kim, Seung-bum
    Huang, Huan-ting
    Tsang, Leung
    Jackson, Thomas
    McNairn, Heather
    van Zyl, Jakob
    [J]. 10TH EUROPEAN CONFERENCE ON SYNTHETIC APERTURE RADAR (EUSAR 2014), 2014,
  • [42] SOIL MOISTURE RETRIEVAL OVER AGRICULTURAL FIELDS FROM TIME SERIES MULTI-ANGULAR L-BAND RADAR DATA
    Zhu, Liujun
    Walker, Jeffrey P.
    Tsang, Leung
    Huang, Huanting
    Ye, Nan
    Rudiger, Christoph
    [J]. IGARSS 2018 - 2018 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2018, : 6139 - 6142
  • [43] RETRIEVAL OF SUBSURFACE SOIL MOISTURE PROFILES FROM L-BAND AND P-BAND REFLECTOMETRY
    Azemati, Amir
    Etminan, Aslan
    Tabatabaeenejad, Alireza
    Moghaddam, Mahta
    [J]. PROCEEDINGS OF THE 2019 INTERNATIONAL CONFERENCE ON ELECTROMAGNETICS IN ADVANCED APPLICATIONS (ICEAA), 2019, : 1328 - 1328
  • [44] Estimation of soil moisture with repeat-pass L-band radiometer measurements
    Shi, JC
    Njoku, EG
    Chen, KS
    Jackson, T
    O'neill, P
    [J]. IGARSS 2003: IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, VOLS I - VII, PROCEEDINGS: LEARNING FROM EARTH'S SHAPES AND SIZES, 2003, : 413 - 415
  • [45] VEHICLE MOUNTED L-BAND RADIOMETER FOR REMOTE SENSING OF TURFGRASS SOIL MOISTURE
    Houtz, Derek
    Horvath, Lars
    Schwank, Mike
    [J]. IGARSS 2023 - 2023 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2023, : 4824 - 4827
  • [46] Soil Moisture Active/Passive L-Band Microwave Radiometer Postlaunch Calibration
    Peng, Jinzheng
    Misra, Sidharth
    Piepmeier, Jeffrey R.
    Dinnat, Emmanuel P.
    Hudson, Derek
    Le Vine, David M.
    De Amici, Giovanni
    Mohammed, Priscilla N.
    Bindlish, Rajat
    Yueh, Simon H.
    Meissner, Thomas
    Jackson, Thomas J.
    [J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2017, 55 (09): : 5339 - 5354
  • [47] RESPONSE OF BISTATIC SCATTERING TO SOIL MOISTURE AND SURFACE ROUGHNESS AT L-BAND
    Zeng, Jiangyuan
    Chen, Kun-Shan
    Yuan, Liu
    Bi, Haiyun
    Chen, Quan
    [J]. 2016 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2016, : 2098 - 2101
  • [48] Soil moisture retrieval using L-band radiometry: Dependence on soil type and moisture profiles
    Monerris, A.
    Vall-Ilossera, M.
    Camps, A.
    Sabia, R.
    Villarino, R.
    Cardona, M.
    Alvarez, E.
    Sosa, S.
    [J]. 2006 IEEE MICRORAD, 2006, : 171 - +
  • [49] Soil moisture retrieval from L-band measurements over a variety of agricultural crops
    Pardé, M
    Wigneron, JP
    Chanzy, A
    Waldteufel, P
    Schmidl, S
    Skou, N
    [J]. IGARSS 2003: IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, VOLS I - VII, PROCEEDINGS: LEARNING FROM EARTH'S SHAPES AND SIZES, 2003, : 914 - 916
  • [50] A Parameterized Surface Emission Model at L-Band for Soil Moisture Retrieval
    Chen, Liang
    Shi, Jiancheng
    Wigneron, Jean-Pierre
    Chen, Kun-Shan
    [J]. IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2010, 7 (01) : 127 - 130