Improving Soil Moisture Data Retrieval From Airborne L-Band Radiometer Data by Considering Spatially Varying Roughness

被引:9
|
作者
Pause, Marion [1 ]
Lausch, Angela [2 ]
Bernhardt, Matthias [3 ]
Hacker, Jorg [4 ]
Schulz, Karsten [5 ]
机构
[1] Univ Tubingen, Water & Earth Syst Sci Competence Cluster WESS, D-72074 Tubingen, Germany
[2] UFZ Helmholtz Ctr Environm Res, Dept Computat Landscape Ecol, D-04318 Leipzig, Germany
[3] Univ Munich, Dept Geog, D-80333 Munich, Germany
[4] Airborne Res Australia, Salisbury South, SA 5106, Australia
[5] Univ Nat Resources & Life Sci, Inst Water Management Hydrol & Hydraul Engn, A-1190 Vienna, Austria
关键词
VEGETATION OPTICAL DEPTH; MICROWAVE EMISSION; SURFACE-ROUGHNESS; MODEL; PARAMETERIZATION; POLARIZATION; METHODOLOGY;
D O I
10.1080/07038992.2014.907522
中图分类号
TP7 [遥感技术];
学科分类号
081102 ; 0816 ; 081602 ; 083002 ; 1404 ;
摘要
This study presents the retrieval of near-surface soil moisture data below crop canopies (winter rye and winter barley) from airborne L-band radiometer observations using a radiative transfer model at very dry soil moisture conditions (<15 Vol.%). Using physically based models, the roughness parameterization plays a crucial role for the description of the surface emissivity. A two-step optimization procedure was performed for choosing an optimal roughness value to minimize the uncertainty of soil moisture estimates. A crop-type specific roughness parameterization within the model did not show satisfactory soil moisture results. Instead, a "pixel"-based (spatially varying) roughness parameter optimization provided significantly improved results, also indicating a strong relationship between the optimal roughness parameter value and the Normalized Difference Vegetation Index (NDVI) derived from imaging spectrometer data. Our results demonstrate the importance of treating surface roughness as spatially variable when retrieving soil moisture information from high spatial resolution L-band brightness temperature data. Furthermore, the results strongly indicate that a combination of passive microwave observations and optical remote sensing data of the vegetation improve the mapping and monitoring of surface soil moisture.
引用
收藏
页码:15 / 25
页数:11
相关论文
共 50 条
  • [31] Soil Moisture Retrieval Using L-Band Radar Observations
    Narvekar, Parag S.
    Entekhabi, Dara
    Kim, Seung-Bum
    Njoku, Eni G.
    [J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2015, 53 (06): : 3492 - 3506
  • [32] INVERSION OF PHYSICAL MODELS USING L-BAND AIRBORNE SAR DATA FOR SOIL MOISTURE ESTIMATES AT FIELD SCALE
    Kim, Seungbum
    Huang, Huanting
    Liao, Tienhao
    [J]. IGARSS 2018 - 2018 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2018, : 6115 - 6118
  • [33] Circular polarization for L-band radiometric soil moisture retrieval
    De Roo, RD
    England, AW
    Munn, J
    [J]. 2004 IEEE AEROSPACE CONFERENCE PROCEEDINGS, VOLS 1-6, 2004, : 1015 - 1023
  • [34] Estimation of bare surface soil moisture and surface roughness parameter using L-band SAR image data
    Shi, JC
    Wang, J
    Hsu, AY
    ONeill, PE
    Engman, ET
    [J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 1997, 35 (05): : 1254 - 1266
  • [35] Soil Moisture Retrieval Using a Two-Dimensional L-Band Synthetic Aperture Radiometer in a Semiarid Environment
    Ryu, Dongryeol
    Jackson, Thomas J.
    Bindlish, Rajat
    Le Vine, David M.
    Haken, Michael
    [J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2010, 48 (12): : 4273 - 4284
  • [36] Soil moisture retrieval through a merging of multi-temporal L-band SAR data and hydrologic modelling
    Mattia, F.
    Satalino, G.
    Pauwels, V. R. N.
    Loew, A.
    [J]. HYDROLOGY AND EARTH SYSTEM SCIENCES, 2009, 13 (03) : 343 - 356
  • [37] Soil moisture retrieval over croplands using dual-pol L-band GRD SAR data
    Bhogapurapu, Narayanarao
    Dey, Subhadip
    Mandal, Dipankar
    Bhattacharya, Avik
    Karthikeyan, L.
    McNairn, Heather
    Rao, Y. S.
    [J]. REMOTE SENSING OF ENVIRONMENT, 2022, 271
  • [38] TOWARDS GLOBAL RETRIEVAL OF FIELD-SCALE SURFACE SOIL MOISTURE USING L-BAND SAR DATA
    Kim, Seungbum
    Liao, Tienhao
    [J]. 2022 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS 2022), 2022, : 5452 - 5455
  • [39] Synergistic Use of AirMOSS P-band SAR with the SMAP L-band Radar-Radiometer for Soil Moisture Retrieval
    Akbar, R.
    Chen, R.
    Tabatabaeenejad, A.
    Moghaddam, M.
    [J]. PROCEEDINGS OF THE 2016 INTERNATIONAL CONFERENCE ON ELECTROMAGNETICS IN ADVANCED APPLICATIONS (ICEAA), 2016, : 793 - 795
  • [40] Machine Learning Modelling for Soil Moisture Retrieval from Simulated NASA-ISRO SAR (NISAR) L-Band Data
    Dinesh, Dev
    Kumar, Shashi
    Saran, Sameer
    [J]. REMOTE SENSING, 2024, 16 (18)