Improving Soil Moisture Data Retrieval From Airborne L-Band Radiometer Data by Considering Spatially Varying Roughness

被引:9
|
作者
Pause, Marion [1 ]
Lausch, Angela [2 ]
Bernhardt, Matthias [3 ]
Hacker, Jorg [4 ]
Schulz, Karsten [5 ]
机构
[1] Univ Tubingen, Water & Earth Syst Sci Competence Cluster WESS, D-72074 Tubingen, Germany
[2] UFZ Helmholtz Ctr Environm Res, Dept Computat Landscape Ecol, D-04318 Leipzig, Germany
[3] Univ Munich, Dept Geog, D-80333 Munich, Germany
[4] Airborne Res Australia, Salisbury South, SA 5106, Australia
[5] Univ Nat Resources & Life Sci, Inst Water Management Hydrol & Hydraul Engn, A-1190 Vienna, Austria
关键词
VEGETATION OPTICAL DEPTH; MICROWAVE EMISSION; SURFACE-ROUGHNESS; MODEL; PARAMETERIZATION; POLARIZATION; METHODOLOGY;
D O I
10.1080/07038992.2014.907522
中图分类号
TP7 [遥感技术];
学科分类号
081102 ; 0816 ; 081602 ; 083002 ; 1404 ;
摘要
This study presents the retrieval of near-surface soil moisture data below crop canopies (winter rye and winter barley) from airborne L-band radiometer observations using a radiative transfer model at very dry soil moisture conditions (<15 Vol.%). Using physically based models, the roughness parameterization plays a crucial role for the description of the surface emissivity. A two-step optimization procedure was performed for choosing an optimal roughness value to minimize the uncertainty of soil moisture estimates. A crop-type specific roughness parameterization within the model did not show satisfactory soil moisture results. Instead, a "pixel"-based (spatially varying) roughness parameter optimization provided significantly improved results, also indicating a strong relationship between the optimal roughness parameter value and the Normalized Difference Vegetation Index (NDVI) derived from imaging spectrometer data. Our results demonstrate the importance of treating surface roughness as spatially variable when retrieving soil moisture information from high spatial resolution L-band brightness temperature data. Furthermore, the results strongly indicate that a combination of passive microwave observations and optical remote sensing data of the vegetation improve the mapping and monitoring of surface soil moisture.
引用
收藏
页码:15 / 25
页数:11
相关论文
共 50 条
  • [1] A New Algorithm for Soil Moisture Retrieval With L-Band Radiometer
    Guo, Peng
    Shi, Jiancheng
    Liu, Qiang
    Du, Jinyang
    [J]. IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2013, 6 (03) : 1147 - 1155
  • [2] Multitemporal retrieval of Soil Moisture from SMAP Radar Data at L-Band
    Fascetti, Fabio
    Pierdicca, Nazzareno
    Pulvirenti, Luca
    [J]. SAR IMAGE ANALYSIS, MODELING, AND TECHNIQUES XV, 2015, 9642
  • [3] Soil moisture retrieval from airborne L-band passive microwave using high resolution multispectral data
    Hasan, Sayeh
    Montzka, Carsten
    Ruediger, Christoph
    Al, Muhammad
    Bogena, Heye R.
    Vereecken, Harry
    [J]. ISPRS JOURNAL OF PHOTOGRAMMETRY AND REMOTE SENSING, 2014, 91 : 59 - 71
  • [4] Integration of L-Band Derived Soil Roughness into a Bare Soil Moisture Retrieval Approach from C-Band SAR Data
    Hamze, Mohamad
    Baghdadi, Nicolas
    El Hajj, Marcel M.
    Zribi, Mehrez
    Bazzi, Hassan
    Cheviron, Bruno
    Faour, Ghaleb
    [J]. REMOTE SENSING, 2021, 13 (11)
  • [5] Validation of AMSR-E soil moisture using L-band airborne radiometer data from National Airborne Field Experiment 2006
    Mladenova, Iliana
    Lakshmi, Venkat
    Jackson, Thomas J.
    Walker, Jeffrey P.
    Merlin, Olivier
    de Jeu, Richard A. M.
    [J]. REMOTE SENSING OF ENVIRONMENT, 2011, 115 (08) : 2096 - 2103
  • [6] Soil Moisture Estimations Based on Airborne CAROLS L-Band Microwave Data
    Parde, Mickael
    Zribi, Mehrez
    Wigneron, Jean-Pierre
    Dechambre, Monique
    Fanise, Pascal
    Kerr, Yann
    Crapeau, Marc
    Saleh, Kauzar
    Calvet, Jean-Christophe
    Albergel, Clement
    Mialon, Arnaud
    Novello, Natalie
    [J]. REMOTE SENSING, 2011, 3 (12): : 2591 - 2604
  • [7] Global soil moisture retrieval from a synthetic L-band brightness temperature data set
    Pellarin, T
    Wigneron, JP
    Calvet, JC
    Waldteufel, P
    [J]. JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2003, 108 (D12)
  • [8] Analysis of Data Acquisition Time on Soil Moisture Retrieval From Multiangle L-Band Observations
    Peischl, Sandy
    Walker, Jeffrey P.
    Ryu, Dongryeol
    Kerr, Yann H.
    [J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2018, 56 (02): : 966 - 971
  • [9] Sunglint observations over land from ground and airborne L-band radiometer data
    Escorihuela, M. J.
    Saleh, K.
    Richaume, P.
    Merlin, O.
    Walker, J. P.
    Kerr, Y. H.
    [J]. GEOPHYSICAL RESEARCH LETTERS, 2008, 35 (20)
  • [10] Soil Moisture Retrieval Using L-Band Radiometer and Ground-Penetrating Radar
    Jonard, Francois
    Weihermueller, Lutz
    Schwank, Mike
    Vereecken, Harry
    Lambot, Sebastien
    [J]. 2011 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2011, : 3093 - 3096