Weighted regularity criteria for the three-dimensional Navier-Stokes equations

被引:13
|
作者
Zhou, Yong [1 ]
机构
[1] Zhejiang Normal Univ, Dept Math, Jinhua 321004, Zhejiang, Peoples R China
关键词
WEAK SOLUTIONS; PARABOLIC EQUATIONS; PRESSURE; TERMS; GRADIENT;
D O I
10.1017/S0308210507000790
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We establish some regularity criteria in terms of the velocity field with weight for the Navier-Stokes equations in R(3). It is proved that if the weak solution satisfies (x0 is an element of R3)sup parallel to vertical bar x - x(0)vertical bar(beta)u(x, t)parallel to L(alpha)((0,T),L(gamma)(R(3))) < infinity with 2/alpha + 3/gamma = 1 - beta or (x0 is an element of R3)sup parallel to vertical bar x - x(0)vertical bar(beta)del u(x, t)parallel to L(alpha)((0,T), L(gamma)(R(3))) < infinity with 2/alpha + 3/gamma = 2 - beta, then the weak solution actually is regular up to time T.
引用
收藏
页码:661 / 671
页数:11
相关论文
共 50 条