Weighted regularity criteria for the three-dimensional Navier-Stokes equations

被引:13
|
作者
Zhou, Yong [1 ]
机构
[1] Zhejiang Normal Univ, Dept Math, Jinhua 321004, Zhejiang, Peoples R China
关键词
WEAK SOLUTIONS; PARABOLIC EQUATIONS; PRESSURE; TERMS; GRADIENT;
D O I
10.1017/S0308210507000790
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We establish some regularity criteria in terms of the velocity field with weight for the Navier-Stokes equations in R(3). It is proved that if the weak solution satisfies (x0 is an element of R3)sup parallel to vertical bar x - x(0)vertical bar(beta)u(x, t)parallel to L(alpha)((0,T),L(gamma)(R(3))) < infinity with 2/alpha + 3/gamma = 1 - beta or (x0 is an element of R3)sup parallel to vertical bar x - x(0)vertical bar(beta)del u(x, t)parallel to L(alpha)((0,T), L(gamma)(R(3))) < infinity with 2/alpha + 3/gamma = 2 - beta, then the weak solution actually is regular up to time T.
引用
收藏
页码:661 / 671
页数:11
相关论文
共 50 条
  • [41] Exact solutions of unsteady three-dimensional Navier-Stokes equations
    S. N. Aristov
    A. D. Polyanin
    [J]. Doklady Physics, 2009, 54 : 316 - 321
  • [42] Three-dimensional model of navier-stokes equations for water waves
    Li, B
    Fleming, CA
    [J]. JOURNAL OF WATERWAY PORT COASTAL AND OCEAN ENGINEERING, 2001, 127 (01) : 16 - 25
  • [43] Vortex stretching and criticality for the three-dimensional Navier-Stokes equations
    Dascaliuc, R.
    Grujic, Z.
    [J]. JOURNAL OF MATHEMATICAL PHYSICS, 2012, 53 (11)
  • [44] ON THE STABILITY OF GLOBAL SOLUTIONS TO THE THREE-DIMENSIONAL NAVIER-STOKES EQUATIONS
    Bahouri, Hajer
    Chemin, Jean-Yves
    Gallagher, Isabelle
    [J]. JOURNAL DE L ECOLE POLYTECHNIQUE-MATHEMATIQUES, 2018, 5 : 843 - 911
  • [45] SOLUTIONS TO THREE-DIMENSIONAL NAVIER-STOKES EQUATIONS FOR INCOMPRESSIBLE FLUIDS
    Jormakka, Jorma
    [J]. ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2010,
  • [46] NEW ANALYTICAL SOLUTION OF THE THREE-DIMENSIONAL NAVIER-STOKES EQUATIONS
    Rashidi, Mohammad Mehdi
    Domairry, Ganji
    [J]. MODERN PHYSICS LETTERS B, 2009, 23 (26): : 3147 - 3155
  • [47] Dynamics of three-dimensional turbulence from Navier-Stokes equations
    Sreenivasan, Katepalli R.
    Yakhot, Victor
    [J]. PHYSICAL REVIEW FLUIDS, 2021, 6 (10):
  • [48] CONTINUOUS DATA ASSIMILATION FOR THE THREE-DIMENSIONAL NAVIER-STOKES EQUATIONS
    Biswas, Animikh
    Price, Randy
    [J]. SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2021, 53 (06) : 6697 - 6723
  • [49] Space-Time Regularity for the Three Dimensional Navier-Stokes and MHD Equations
    Zhu, Weipeng
    Zhao, Jihong
    [J]. ACTA APPLICANDAE MATHEMATICAE, 2019, 163 (01) : 157 - 184
  • [50] Energy-Based Regularity Criteria for the Navier-Stokes Equations
    Farwig, Reinhard
    Kozono, Hideo
    Sohr, Hermann
    [J]. JOURNAL OF MATHEMATICAL FLUID MECHANICS, 2009, 11 (03) : 428 - 442