On the regularity criteria for the three-dimensional compressible Navier-Stokes system in Lorentz spaces

被引:0
|
作者
Wang, Yanqing [1 ]
Wang, Yongfu [2 ]
Ye, Yulin [3 ]
机构
[1] Zhengzhou Univ Light Ind, Coll Math & Informat Sci, Zhengzhou, Peoples R China
[2] Southwestern Univ Finance & Econ, Sch Math, Chengdu 611130, Peoples R China
[3] Henan Univ, Sch Math & Stat, Kaifeng, Peoples R China
基金
中国国家自然科学基金; 中国博士后科学基金;
关键词
Navier-Stokes equations; regularity; strong solutions; vacuum; GLOBAL WELL-POSEDNESS; BLOW-UP CRITERION; CLASSICAL-SOLUTIONS; CAUCHY-PROBLEM; EQUATIONS; EXISTENCE;
D O I
10.1002/mma.8802
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we are concerned with the continuation criteria to the 3D isentropic compressible Navier-Stokes equations in Lorentz spaces. We prove that there exists a positive constant epsilon$$ \varepsilon $$ such that no blowup occurs at time T$$ T $$ in this system provided that the supernorm of the density is bounded and the space-time Lorentz spaces norm ||rho u||Lp,infinity(0,T;Lq,infinity)$$ {\left\Vert \sqrt{\rho }u\right\Vert}_{L circumflex {p,\infty}\left(0,T;{L} circumflex {q,\infty}\right)} $$ with 2/p+3/q=1$$ 2/p+3/q equal to 1 $$ (3 <= q<infinity)$$ \left(3\le q<\infty \right) $$ is small. As a direct application, we established some Serrin's blow-up criteria in the Lorentz spaces.
引用
收藏
页码:4763 / 4774
页数:12
相关论文
共 50 条
  • [1] Regularity Criteria for the Three-dimensional Navier-Stokes Equations
    Cao, Chongsheng
    Titi, Edriss S.
    [J]. INDIANA UNIVERSITY MATHEMATICS JOURNAL, 2008, 57 (06) : 2643 - 2661
  • [2] BOUNDARY ε-REGULARITY CRITERIA FOR THE THREE-DIMENSIONAL NAVIER-STOKES EQUATIONS
    Dong, Hongjie
    Wang, Kunrui
    [J]. SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2020, 52 (02) : 1290 - 1309
  • [3] Weighted regularity criteria for the three-dimensional Navier-Stokes equations
    Zhou, Yong
    [J]. PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 2009, 139 : 661 - 671
  • [4] ON CONTINUATION CRITERIA FOR THE FULL COMPRESSIBLE NAVIER-STOKES EQUATIONS IN LORENTZ SPACES
    Wang, Yanqing
    Wei, Wei
    Wu, Gang
    Ye, Yulin
    [J]. ACTA MATHEMATICA SCIENTIA, 2022, 42 (02) : 671 - 689
  • [5] On Continuation Criteria for the Full Compressible Navier-Stokes Equations in Lorentz Spaces
    Yanqing Wang
    Wei Wei
    Gang Wu
    Yulin Ye
    [J]. Acta Mathematica Scientia, 2022, 42 : 671 - 689
  • [6] ON CONTINUATION CRITERIA FOR THE FULL COMPRESSIBLE NAVIER-STOKES EQUATIONS IN LORENTZ SPACES
    王艳青
    魏巍
    吴刚
    叶嵎林
    [J]. Acta Mathematica Scientia, 2022, 42 (02) : 671 - 689
  • [7] Logarithmically improved regularity criteria for the Navier-Stokes equations in Lorentz spaces
    Wei, Zhiqiang
    Wang, Yu-Zhu
    Wang, Yin-Xia
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 2012, 218 (19) : 9848 - 9852
  • [8] ε-Regularity criteria for the 3D Navier-Stokes equations in Lorentz spaces
    Wang, Yanqing
    Wei, Wei
    Yu, Huan
    [J]. JOURNAL OF EVOLUTION EQUATIONS, 2021, 21 (02) : 1627 - 1650
  • [9] Remarks on the Regularity Criteria of Three-Dimensional Navier-Stokes Equations in Margin Case
    Zhang Xingwei
    Zhang Wenliang
    Dong Bo-Qing
    [J]. JOURNAL OF PARTIAL DIFFERENTIAL EQUATIONS, 2011, 24 (01): : 70 - 82
  • [10] A regularity class for the Navier-Stokes equations in Lorentz spaces
    Hermann Sohr
    [J]. Journal of Evolution Equations, 2001, 1 : 441 - 467