The effects of confined core volume on the mechanical behavior of Al/a-Si core-shell nanostructures

被引:17
|
作者
Fleming, Robert A. [1 ,2 ]
Zou, Min [1 ,2 ]
机构
[1] Univ Arkansas, Dept Mech Engn, Fayetteville, AR 72701 USA
[2] Univ Arkansas, Ctr Adv Surface Engn, Fayetteville, AR 72701 USA
基金
美国国家科学基金会;
关键词
Core-shell nanostructure; Nanoindentation; Deformation-resistant; Dislocations; Molecular dynamics; NANOCRYSTALLINE MATERIALS; NANOLAMINATE COMPOSITES; SILICON NANOSPHERES; DEFORMATION; PLASTICITY; NANOINDENTATION; NANOSCALE; CRYSTALS; DYNAMICS; STRENGTH;
D O I
10.1016/j.actamat.2017.02.009
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The mechanical behavior of novel Al/a-Si core-shell nanostructures (CSNs) is studied using instrumented nanoindentation to investigate the role that the confined core volume plays on the mechanical response of these structures. The CSNs are fabricated from truncated hemispherical Al nanodots with 100, 200, and 300 nm base diameters, which are then conformably coated with a-Si. CSNs with the smallest core diameter, and therefore the smallest confined core volume, have a unique load-displacement behavior characterized by nearly complete recovery of deformation beyond the elastic limit, which is enabled by dislocation activities within the confined Al core. In conjunction with this deformation recovery, discontinuous indentation signatures known as "load-drops" and "load-jumps" are observed during loading and unloading, respectively. As the size of the confined core volume increases, these indentation signatures are suppressed and the deformation-resistant properties are reduced. Supporting molecular dynamics simulations show that a smaller core volume results in a larger back-stress developed in the core during indentation, which further correlates with improved dislocation removal from the core after unloading. This complementary experimental and modeling investigation provides insight into the mechanisms that contribute to the unique mechanical properties of Al/a-Si CSNs. (C) 2017 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
引用
下载
收藏
页码:149 / 159
页数:11
相关论文
共 50 条
  • [11] Quantum shape oscillations in the thermodynamic properties of confined electrons in core-shell nanostructures
    Aydin, Alhun
    Fransson, Jonas
    Sisman, Altug
    JOURNAL OF PHYSICS-CONDENSED MATTER, 2022, 34 (02)
  • [12] Quantum effects in the plasmon response of bimetallic core-shell nanostructures
    Marinica, Dana-Codruta
    Aizpurua, Javier
    Borisov, Andrei G.
    OPTICS EXPRESS, 2016, 24 (21): : 23941 - 23956
  • [13] Preparation of Carbon-encapsulated Fe core-shell nanostructures by Confined arc plasma
    Wei, Zhiqiang
    Wang, Xiaoyun
    Yang, Hua
    NANO-SCALE AND AMOURPHOUS MATERIALS, 2011, 688 : 245 - +
  • [14] Ferrous Centers Confined on Core-Shell Nanostructures for Low-Temperature CO Oxidation
    Guo, Xiaoguang
    Fu, Qiang
    Ning, Yanxiao
    Wei, Mingming
    Li, Mingrun
    Zhang, Shuo
    Jiang, Zheng
    Bao, Xinhe
    JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2012, 134 (30) : 12350 - 12353
  • [15] Core-shell nanostructures for ultrasensitive detection of α-thrombin
    Chen, Xia
    Liu, Hongli
    Zhou, Xiaodong
    Hu, Jiming
    NANOSCALE, 2010, 2 (12) : 2841 - 2846
  • [16] Silica-metal core-shell nanostructures
    Jankiewicz, B. J.
    Jamiola, D.
    Choma, J.
    Jaroniec, M.
    ADVANCES IN COLLOID AND INTERFACE SCIENCE, 2012, 170 (1-2) : 28 - 47
  • [17] Nanoengineering Liquid Metal Core-Shell Nanostructures
    Lu, Hongda
    Tang, Shi-Yang
    Zhu, Jiayuan
    Huang, Xumin
    Forgham, Helen
    Li, Xiangke
    Shen, Ao
    Yun, Guolin
    Hu, Jinming
    Zhang, Shiwu
    Davis, Thomas P.
    Li, Weihua
    Qiao, Ruirui
    ADVANCED FUNCTIONAL MATERIALS, 2024, 34 (06)
  • [18] Analysis and Design of Core-Shell Upconverting Nanostructures
    Wistey, Mark A.
    Patel, Victor
    Loof, Joseph L.
    O'Brien, William A.
    Qi, Meng
    Erdman, Anthony J.
    Stephenson, Chad A.
    2014 IEEE 40TH PHOTOVOLTAIC SPECIALIST CONFERENCE (PVSC), 2014, : 3248 - 3250
  • [19] Plasmonic Core-Shell Nanostructures Enhanced Spectroscopies
    Zhou, Jun
    Wei, Di-Ye
    Zhang, Yu-Jin
    Zhang, Hua
    Li, Jian-Feng
    CHINESE JOURNAL OF CHEMISTRY, 2022, 40 (03): : 392 - 406
  • [20] Metallic core-shell nanostructures for photoelectrochemical cells
    Sheehan, Stafford W.
    Noh, Heeso
    Brudvig, Gary W.
    Cao, Hui
    Schmuttenmaer, Charles A.
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2014, 248