Nanoengineering Liquid Metal Core-Shell Nanostructures

被引:8
|
作者
Lu, Hongda [1 ]
Tang, Shi-Yang [2 ]
Zhu, Jiayuan [3 ]
Huang, Xumin [3 ]
Forgham, Helen [3 ]
Li, Xiangke [3 ]
Shen, Ao [3 ]
Yun, Guolin [4 ]
Hu, Jinming [5 ]
Zhang, Shiwu [6 ]
Davis, Thomas P. [3 ]
Li, Weihua [1 ]
Qiao, Ruirui [3 ]
机构
[1] Univ Wollongong, Sch Mech Mat Mechatron & Biomed Engn, Wollongong, NSW 2522, Australia
[2] Univ Southampton, Sch Elect & Comp Sci, Southampton SO17 1BJ, England
[3] Univ Queensland, Australian Inst Bioengn & Nanotechnol, St Lucia, Qld 4072, Australia
[4] Univ Cambridge, Dept Engn, Old Sch, Trinity Ln, Cambridge CB2 1TN, England
[5] Univ Sci & Technol China, Dept Polymer Sci & Engn, Div Life Sci & Med, Dept Pharm,Affiliated Hosp USTC 1, 96 Jinzhai Rd, Hefei 230026, Anhui, Peoples R China
[6] Univ Sci & Technol China, Dept Precis Machinery & Precis Instrumentat, CAS Key Lab Mech Behav & Design Mat, Hefei 230026, Peoples R China
基金
英国工程与自然科学研究理事会;
关键词
core-shell nanostructures; galvanic replacement; liquid metals; photothermal conversion efficiency; GALVANIC REPLACEMENT; NANOPARTICLES;
D O I
10.1002/adfm.202311300
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Nanoengineering the composition and morphology of functional nanoparticles endows them to perform multiple tasks and functions. An intriguing strategy for creating multifunctional nanomaterials involves the construction of core-shell nanostructures, which have enabled promising applications in biomedicine, energy, sensing, and catalysis. Here, a straightforward nanoengineering approach is presented utilizing liquid metal nanoparticles and galvanic replacement to create diverse core-shell nanostructures. Controlled nanostructures including liquid metal core-gold nanoparticle shell (LM@Au), gold nanoparticle core-gallium oxide shell (Au@Ga oxide), and hollow Ga oxide nanoparticles are successfully fabricated. Remarkably, these investigations reveal that LM@Au exhibits exceptional photothermal performance, achieving an impressive conversion efficiency of 65.9%, which is five times that of gold nanoparticles. By leveraging the high photothermal conversion efficiency and excellent biocompatibility of LM@Au, its promising application in hyperthermia cancer therapy is demonstrated. This simple yet powerful nanoengineering strategy opens new avenues for the controlled synthesis of complex core-shell nanostructures, advancing various fields beyond biomedicine. A powerful nanoengineering strategy is developed utilizing liquid metal and galvanic replacement to enable the delicate manipulation of tailored liquid metal core-shell nanostructures, facilitating the on-demand production of innovative nanostructures. The superior stability and photothermal conversion efficiency of LM@Au core-shell nanostructures are harnessed exhibiting promise in photothermal cancer therapy.image
引用
收藏
页数:11
相关论文
共 50 条
  • [1] Silica-metal core-shell nanostructures
    Jankiewicz, B. J.
    Jamiola, D.
    Choma, J.
    Jaroniec, M.
    ADVANCES IN COLLOID AND INTERFACE SCIENCE, 2012, 170 (1-2) : 28 - 47
  • [2] General Programmable Growth of Hybrid Core-Shell Nanostructures with Liquid Metal Nanodroplets
    Ren, Long
    Cheng, Ningyan
    Man, Xingkun
    Qi, Dongchen
    Liu, Yundan
    Xu, Guobao
    Cui, Dandan
    Liu, Nana
    Zhong, Jianxin
    Peleckis, Germanas
    Xu, Xun
    Dou, Shi Xue
    Du, Yi
    ADVANCED MATERIALS, 2021, 33 (11)
  • [3] Preparation of metal oxide/zeolite core-shell nanostructures
    Khan, Easir A.
    Hu, Enping
    Lai, Zhiping
    MICROPOROUS AND MESOPOROUS MATERIALS, 2009, 118 (1-3) : 210 - 217
  • [4] Core-Shell nanostructures in electrocatalysis
    Wang, Lei
    Wang, Chao
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2017, 254
  • [5] Core-shell and segmented polymer-metal composite nanostructures
    Lahav, Michal
    Weiss, Emily A.
    Xu, Qiaobing
    Whitesides, George M.
    NANO LETTERS, 2006, 6 (09) : 2166 - 2171
  • [6] Core-Shell Noble Metal Nanostructures Templated by Gold Nanorods
    Hou, Shuai
    Hu, Xiaona
    Wen, Tao
    Liu, Wenqi
    Wu, Xiaochun
    ADVANCED MATERIALS, 2013, 25 (28) : 3857 - 3862
  • [7] Diffusion through the Shells of Yolk-Shell and Core-Shell Nanostructures in the Liquid Phase
    Liang, Xiaoliang
    Li, Jie
    Joo, Ji Bong
    Gutierrez, Alejandro
    Tillekaratne, Aashani
    Lee, Ilkeun
    Yin, Yadong
    Zaera, Francisco
    ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2012, 51 (32) : 8034 - 8036
  • [8] Core-shell nanostructures: Titanium on silica
    Zhou, Liang
    Ramirez-Huerta, Mayela
    Soucek, Mark D.
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2007, 233
  • [9] Mechanical behavior of core-shell nanostructures
    Santhapuram, Raghuram R.
    Spearot, Douglas E.
    Nair, Arun K.
    JOURNAL OF MATERIALS SCIENCE, 2020, 55 (10) : 4303 - 4310
  • [10] Core-shell nanostructures for better thermoelectrics
    Mulla, Rafiq
    Dunnill, Charles W.
    MATERIALS ADVANCES, 2022, 3 (01): : 125 - 141