Double inverted pendulum decoupling control by adaptive terminal sliding-mode recurrent fuzzy neural network

被引:6
|
作者
Mon, Yi-Jen [1 ]
Lin, Chih-Min [2 ]
机构
[1] Taoyuan Innovat Inst Technol, Dept Comp Sci & Informat Engn, Tao Yuan 320, Taiwan
[2] Yuan Ze Univ, Dept Elect Engn, Tao Yuan, Taiwan
关键词
Recurrent fuzzy neural network; adaptive terminal sliding mode control; double inverted pendulum system; DESIGN; SYSTEMS; MOTOR;
D O I
10.3233/IFS-130851
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
An adaptive terminal sliding-mode recurrent fuzzy neural network (ATSRFNN) control system is developed to control a coupled double inverted pendulum system. The proposed ATSRFNN control system is composed of a recurrent fuzzy neural network (RFNN) controller and an adaptive terminal sliding (ATS) controller. The RFNN controller is designed to mimic an ideal controller, and the ATS controller is designed to cope with the approximation error and external disturbance. The simulation results show the proposed ATSRFNN control system can achieve better control performance and robustness in comparison with a hierarchical fuzzy sliding-mode control system.
引用
收藏
页码:1723 / 1729
页数:7
相关论文
共 50 条
  • [31] Adaptive stabilizing and tracking control for a nonlinear inverted-pendulum system via sliding-mode technique
    Wai, RJ
    Chang, LJ
    [J]. IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, 2006, 53 (02) : 674 - 692
  • [32] Adaptive Fuzzy Terminal Sliding-Mode Observer with Experimental Applications
    Selami Beyhan
    [J]. International Journal of Fuzzy Systems, 2016, 18 : 585 - 594
  • [33] Adaptive Fuzzy Terminal Sliding-Mode Observer with Experimental Applications
    Beyhan, Selami
    [J]. INTERNATIONAL JOURNAL OF FUZZY SYSTEMS, 2016, 18 (04) : 585 - 594
  • [34] IMPLEMENTATION OF SLIDING MODE CONTROL WITH ARTIFICIAL NEURAL NETWORK TO THE ROTARY INVERTED PENDULUM SYSTEM
    Aydin, Muhammet
    Yakut, Oguz
    Alli, Hasan
    [J]. SIGMA JOURNAL OF ENGINEERING AND NATURAL SCIENCES-SIGMA MUHENDISLIK VE FEN BILIMLERI DERGISI, 2013, 5 (01): : 39 - 50
  • [35] A New Type of Adaptive Neural Network Fuzzy Controller in the Double Inverted Pendulum System
    Zhang, Suying
    An, Ran
    Shao, Shuman
    [J]. ARTIFICIAL INTELLIGENCE AND COMPUTATIONAL INTELLIGENCE, PT II, 2011, 7003 : 149 - +
  • [36] A linear-programming-based sliding-mode control design for stabilization of a double-inverted pendulum
    Yazici, A.
    Karamancioglu, A.
    [J]. PROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS PART I-JOURNAL OF SYSTEMS AND CONTROL ENGINEERING, 2006, 220 (I4) : 315 - 321
  • [37] Fuzzy Swing-Up and Fuzzy Sliding-Mode Balance Control for a Planetary-Gear-Type Inverted Pendulum
    Chang, Yeong-Hwa
    Chang, Chia-Wen
    Taur, Jin-Shiuh
    Tao, Chin-Wang
    [J]. IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, 2009, 56 (09) : 3751 - 3761
  • [38] Neural-network-based robust terminal sliding-mode control of quadrotor
    Lin, Xumei
    Wang, Yulu
    Liu, Yunfei
    [J]. ASIAN JOURNAL OF CONTROL, 2022, 24 (01) : 427 - 438
  • [39] Neural Network Based Nonsingular Terminal Sliding-Mode Control of Induction Motors
    Zhou, Minghao
    Feng, Yong
    Xue, Chen
    Xu, Long
    [J]. 45TH ANNUAL CONFERENCE OF THE IEEE INDUSTRIAL ELECTRONICS SOCIETY (IECON 2019), 2019, : 6538 - 6542
  • [40] Sliding mode with neuro-fuzzy network controller for inverted pendulum
    Daikh, Fatima Zohra
    Khelfi, Mohamed Faycal
    [J]. INTERNATIONAL JOURNAL OF AUTOMATION AND CONTROL, 2015, 9 (01) : 24 - 36